qwen_agent/skills_developing/rag-retrieve/SKILL.md
2026-02-06 17:05:17 +08:00

148 lines
3.5 KiB
Markdown

---
name: rag-retrieve
description: RAG retrieval skill for querying and retrieving relevant documents from knowledge base. Use this skill when users need to search documentation, retrieve knowledge base articles, or get context from a vector database. Supports semantic search with configurable top-k results.
---
# RAG Retrieve
## Skill Structure
This is a **self-contained skill package** that can be distributed independently. The skill includes its own scripts and configuration:
```
rag-retrieve/
├── SKILL.md # Core instruction file (this file)
├── skill.yaml # Skill metadata
├── scripts/ # Executable scripts
│ └── rag_retrieve.py # Main RAG retrieval script
```
## Overview
Query and retrieve relevant documents from a RAG (Retrieval-Augmented Generation) knowledge base using vector search. This skill provides semantic search capabilities with support for multiple bot instances and configurable result limits.
## Required Parameters
Before executing any retrieval, you MUST confirm the following required parameters with the user if they are not explicitly provided:
| Parameter | Description | Type |
|-----------|-------------|------|
| **query** | Search query content | string |
### Optional Parameters
| Parameter | Description | Type | Default |
|-----------|-------------|------|---------|
| **top_k** | Maximum number of results | integer | 100 |
### Confirmation Template
When the required parameter is missing, ask the user:
```
I need some information to perform the RAG retrieval:
1. Query: What would you like to search for?
```
## Quick Start
Use the `scripts/rag_retrieve.py` script to execute RAG queries:
```bash
scripts/rag_retrieve.py --query "your search query"
```
## Usage Examples
### Basic Query
```bash
scripts/rag_retrieve.py --query "How to configure authentication?"
```
### Search with Specific Top-K
```bash
scripts/rag_retrieve.py --query "API error handling" --top-k 50
```
### Common Use Cases
**Scenario 1: Documentation Search**
```bash
scripts/rag_retrieve.py --query "deployment guide"
```
**Scenario 2: Troubleshooting**
```bash
scripts/rag_retrieve.py --query "connection timeout error"
```
**Scenario 3: Feature Information**
```bash
scripts/rag_retrieve.py --query "enterprise pricing plans"
```
## Script Usage
### rag_retrieve.py
Main script for executing RAG retrieval queries.
```bash
scripts/rag_retrieve.py [OPTIONS]
```
**Options:**
| Option | Required | Description | Default |
|--------|----------|-------------|---------|
| `--query`, `-q` | Yes | Search query content | - |
| `--top-k`, `-k` | No | Maximum number of results | 100 |
**Examples:**
```bash
# Basic query
scripts/rag_retrieve.py --query "authentication setup"
# Custom top-k
scripts/rag_retrieve.py --query "API reference" --top-k 20
```
## Common Workflows
### Research Mode: Comprehensive Search
```bash
scripts/rag_retrieve.py --query "machine learning algorithms" --top-k 100
```
### Quick Answer Mode: Focused Search
```bash
scripts/rag_retrieve.py --query "password reset" --top-k 10
```
### Comparison Mode: Multiple Queries
```bash
# Search for related topics
scripts/rag_retrieve.py --query "REST API" --top-k 30
scripts/rag_retrieve.py --query "GraphQL API" --top-k 30
```
## Resources
### scripts/rag_retrieve.py
Executable Python script for RAG retrieval. Handles:
- HTTP requests to RAG API
- Authentication token generation
- Configuration file loading
- Error handling and reporting
- Markdown response parsing
The script can be executed directly without loading into context.