qwen_agent/skills_developing/rag-retrieve/SKILL.md
2026-02-06 17:05:17 +08:00

3.5 KiB

name description
rag-retrieve RAG retrieval skill for querying and retrieving relevant documents from knowledge base. Use this skill when users need to search documentation, retrieve knowledge base articles, or get context from a vector database. Supports semantic search with configurable top-k results.

RAG Retrieve

Skill Structure

This is a self-contained skill package that can be distributed independently. The skill includes its own scripts and configuration:

rag-retrieve/
├── SKILL.md              # Core instruction file (this file)
├── skill.yaml            # Skill metadata
├── scripts/              # Executable scripts
│   └── rag_retrieve.py   # Main RAG retrieval script

Overview

Query and retrieve relevant documents from a RAG (Retrieval-Augmented Generation) knowledge base using vector search. This skill provides semantic search capabilities with support for multiple bot instances and configurable result limits.

Required Parameters

Before executing any retrieval, you MUST confirm the following required parameters with the user if they are not explicitly provided:

Parameter Description Type
query Search query content string

Optional Parameters

Parameter Description Type Default
top_k Maximum number of results integer 100

Confirmation Template

When the required parameter is missing, ask the user:

I need some information to perform the RAG retrieval:

1. Query: What would you like to search for?

Quick Start

Use the scripts/rag_retrieve.py script to execute RAG queries:

scripts/rag_retrieve.py --query "your search query"

Usage Examples

Basic Query

scripts/rag_retrieve.py --query "How to configure authentication?"

Search with Specific Top-K

scripts/rag_retrieve.py --query "API error handling" --top-k 50

Common Use Cases

Scenario 1: Documentation Search

scripts/rag_retrieve.py --query "deployment guide"

Scenario 2: Troubleshooting

scripts/rag_retrieve.py --query "connection timeout error"

Scenario 3: Feature Information

scripts/rag_retrieve.py --query "enterprise pricing plans"

Script Usage

rag_retrieve.py

Main script for executing RAG retrieval queries.

scripts/rag_retrieve.py [OPTIONS]

Options:

Option Required Description Default
--query, -q Yes Search query content -
--top-k, -k No Maximum number of results 100

Examples:

# Basic query
scripts/rag_retrieve.py --query "authentication setup"

# Custom top-k
scripts/rag_retrieve.py --query "API reference" --top-k 20

Common Workflows

scripts/rag_retrieve.py --query "machine learning algorithms" --top-k 100
scripts/rag_retrieve.py --query "password reset" --top-k 10

Comparison Mode: Multiple Queries

# Search for related topics
scripts/rag_retrieve.py --query "REST API" --top-k 30
scripts/rag_retrieve.py --query "GraphQL API" --top-k 30

Resources

scripts/rag_retrieve.py

Executable Python script for RAG retrieval. Handles:

  • HTTP requests to RAG API
  • Authentication token generation
  • Configuration file loading
  • Error handling and reporting
  • Markdown response parsing

The script can be executed directly without loading into context.