- Refactor _extract_skills_to_robot to accept bot_id instead of robot_dir - Add multi-directory skill search with priority order - Switch from zip extraction to direct directory copying - Add rag-retrieve skill directory
3.5 KiB
| name | description |
|---|---|
| rag-retrieve | RAG retrieval skill for querying and retrieving relevant documents from knowledge base. Use this skill when users need to search documentation, retrieve knowledge base articles, or get context from a vector database. Supports semantic search with configurable top-k results. |
RAG Retrieve
Skill Structure
This is a self-contained skill package that can be distributed independently. The skill includes its own scripts and configuration:
rag-retrieve/
├── SKILL.md # Core instruction file (this file)
├── skill.yaml # Skill metadata
├── scripts/ # Executable scripts
│ └── rag_retrieve.py # Main RAG retrieval script
Overview
Query and retrieve relevant documents from a RAG (Retrieval-Augmented Generation) knowledge base using vector search. This skill provides semantic search capabilities with support for multiple bot instances and configurable result limits.
Required Parameters
Before executing any retrieval, you MUST confirm the following required parameters with the user if they are not explicitly provided:
| Parameter | Description | Type |
|---|---|---|
| query | Search query content | string |
Optional Parameters
| Parameter | Description | Type | Default |
|---|---|---|---|
| top_k | Maximum number of results | integer | 100 |
Confirmation Template
When the required parameter is missing, ask the user:
I need some information to perform the RAG retrieval:
1. Query: What would you like to search for?
Quick Start
Use the scripts/rag_retrieve.py script to execute RAG queries:
scripts/rag_retrieve.py --query "your search query"
Usage Examples
Basic Query
scripts/rag_retrieve.py --query "How to configure authentication?"
Search with Specific Top-K
scripts/rag_retrieve.py --query "API error handling" --top-k 50
Common Use Cases
Scenario 1: Documentation Search
scripts/rag_retrieve.py --query "deployment guide"
Scenario 2: Troubleshooting
scripts/rag_retrieve.py --query "connection timeout error"
Scenario 3: Feature Information
scripts/rag_retrieve.py --query "enterprise pricing plans"
Script Usage
rag_retrieve.py
Main script for executing RAG retrieval queries.
scripts/rag_retrieve.py [OPTIONS]
Options:
| Option | Required | Description | Default |
|---|---|---|---|
--query, -q |
Yes | Search query content | - |
--top-k, -k |
No | Maximum number of results | 100 |
Examples:
# Basic query
scripts/rag_retrieve.py --query "authentication setup"
# Custom top-k
scripts/rag_retrieve.py --query "API reference" --top-k 20
Common Workflows
Research Mode: Comprehensive Search
scripts/rag_retrieve.py --query "machine learning algorithms" --top-k 100
Quick Answer Mode: Focused Search
scripts/rag_retrieve.py --query "password reset" --top-k 10
Comparison Mode: Multiple Queries
# Search for related topics
scripts/rag_retrieve.py --query "REST API" --top-k 30
scripts/rag_retrieve.py --query "GraphQL API" --top-k 30
Resources
scripts/rag_retrieve.py
Executable Python script for RAG retrieval. Handles:
- HTTP requests to RAG API
- Authentication token generation
- Configuration file loading
- Error handling and reporting
- Markdown response parsing
The script can be executed directly without loading into context.