qwen_agent/utils/settings.py
2026-02-10 18:59:10 +08:00

100 lines
4.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
# 必填参数
# API Settings
BACKEND_HOST = os.getenv("BACKEND_HOST", "https://api-dev.gptbase.ai")
MASTERKEY = os.getenv("MASTERKEY", "master")
FASTAPI_URL = os.getenv('FASTAPI_URL', 'http://127.0.0.1:8001')
# LLM Token Settings
MAX_CONTEXT_TOKENS = int(os.getenv("MAX_CONTEXT_TOKENS", 200000))
MAX_OUTPUT_TOKENS = int(os.getenv("MAX_OUTPUT_TOKENS", 8000))
# 可选参数
# Summarization Settings
SUMMARIZATION_MAX_TOKENS = int(MAX_CONTEXT_TOKENS/3)
SUMMARIZATION_TOKENS_TO_KEEP = int(SUMMARIZATION_MAX_TOKENS/3)
DEFAULT_TRIM_TOKEN_LIMIT = SUMMARIZATION_MAX_TOKENS - SUMMARIZATION_TOKENS_TO_KEEP + 5000
# Agent Cache Settings
TOOL_CACHE_MAX_SIZE = int(os.getenv("TOOL_CACHE_MAX_SIZE", 20))
TOOL_CACHE_TTL = int(os.getenv("TOOL_CACHE_TTL", 180))
TOOL_CACHE_AUTO_RENEW = os.getenv("TOOL_CACHE_AUTO_RENEW", "true") == "true"
# Project Settings
PROJECT_DATA_DIR = os.getenv("PROJECT_DATA_DIR", "./projects/data")
SKILLS_DIR = os.getenv("SKILLS_DIR", "./skills")
# Tokenizer Settings
TOKENIZERS_PARALLELISM = os.getenv("TOKENIZERS_PARALLELISM", "true")
# Embedding Model Settings
SENTENCE_TRANSFORMER_MODEL = os.getenv("SENTENCE_TRANSFORMER_MODEL", "TaylorAI/gte-tiny")
# Tool Output Length Control Settings
TOOL_OUTPUT_MAX_LENGTH = int(SUMMARIZATION_MAX_TOKENS/4)
TOOL_OUTPUT_TRUNCATION_STRATEGY = os.getenv("TOOL_OUTPUT_TRUNCATION_STRATEGY", "smart")
# THINKING ENABLE
DEFAULT_THINKING_ENABLE = os.getenv("DEFAULT_THINKING_ENABLE", "true") == "true"
# MCP Tool Timeout Settings
MCP_HTTP_TIMEOUT = int(os.getenv("MCP_HTTP_TIMEOUT", 60)) # HTTP 请求超时(秒)
MCP_SSE_READ_TIMEOUT = int(os.getenv("MCP_SSE_READ_TIMEOUT", 300)) # SSE 读取超时(秒)
# ============================================================
# PostgreSQL Checkpoint Configuration
# ============================================================
# PostgreSQL 连接字符串
# 格式: postgresql://user:password@host:port/database
CHECKPOINT_DB_URL = os.getenv("CHECKPOINT_DB_URL", "postgresql://postgres:AeEGDB0b7Z5GK0E2tblt@dev-circleo-pg.celp3nik7oaq.ap-northeast-1.rds.amazonaws.com:5432/gptbase")
#CHECKPOINT_DB_URL = os.getenv("CHECKPOINT_DB_URL", "postgresql://postgres:E5ACJo6zJub4QS@192.168.102.5:5432/agent_db")
# 连接池大小
# 同时可以持有的最大连接数
CHECKPOINT_POOL_SIZE = int(os.getenv("CHECKPOINT_POOL_SIZE", "20"))
MEM0_POOL_SIZE = int(os.getenv("MEM0_POOL_SIZE", "20"))
# Checkpoint 自动清理配置
# 是否启用自动清理旧 session
CHECKPOINT_CLEANUP_ENABLED = os.getenv("CHECKPOINT_CLEANUP_ENABLED", "true") == "true"
# 清理多少天前未活动的 thread天数
CHECKPOINT_CLEANUP_INACTIVE_DAYS = int(os.getenv("CHECKPOINT_CLEANUP_INACTIVE_DAYS", "3"))
# 清理间隔(小时)
# 每隔多少小时执行一次清理任务
CHECKPOINT_CLEANUP_INTERVAL_HOURS = int(os.getenv("CHECKPOINT_CLEANUP_INTERVAL_HOURS", "24"))
# ============================================================
# Mem0 长期记忆配置
# ============================================================
# Mem0 功能开关(全局)
MEM0_ENABLED = os.getenv("MEM0_ENABLED", "true") == "true"
# 语义搜索配置
# 召回记忆数量
MEM0_SEMANTIC_SEARCH_TOP_K = int(os.getenv("MEM0_SEMANTIC_SEARCH_TOP_K", "20"))
os.environ["OPENAI_API_KEY"] = "your_api_key"
# ============================================================
# RAGFlow Knowledge Base Configuration
# ============================================================
# RAGFlow API 配置
RAGFLOW_API_URL = os.getenv("RAGFLOW_API_URL", "http://100.77.70.35:1080")
RAGFLOW_API_KEY = os.getenv("RAGFLOW_API_KEY", "ragflow-MRqxnDnYZ1yp5kklDMIlKH4f1qezvXIngSMGPhu1AG8")
# 文件上传配置
RAGFLOW_MAX_UPLOAD_SIZE = int(os.getenv("RAGFLOW_MAX_UPLOAD_SIZE", str(100 * 1024 * 1024))) # 100MB
RAGFLOW_ALLOWED_EXTENSIONS = os.getenv("RAGFLOW_ALLOWED_EXTENSIONS", "pdf,docx,txt,md,csv").split(",")
# 性能配置
RAGFLOW_CONNECTION_TIMEOUT = int(os.getenv("RAGFLOW_CONNECTION_TIMEOUT", "30")) # 30秒
RAGFLOW_MAX_CONCURRENT_UPLOADS = int(os.getenv("RAGFLOW_MAX_CONCURRENT_UPLOADS", "5"))