qwen_agent/mcp/semantic_search_server.py
2025-11-20 13:29:44 +08:00

200 lines
6.2 KiB
Python

#!/usr/bin/env python3
"""
语义搜索MCP服务器
基于embedding向量进行语义相似度搜索
参考multi_keyword_search_server.py的实现方式
"""
import asyncio
import json
import os
import pickle
import sys
from typing import Any, Dict, List, Optional, Union
import numpy as np
from sentence_transformers import SentenceTransformer, util
from mcp_common import (
get_allowed_directory,
load_tools_from_json,
resolve_file_path,
find_file_in_project,
create_error_response,
create_success_response,
create_initialize_response,
create_ping_response,
create_tools_list_response,
handle_mcp_streaming
)
import requests
def semantic_search(queries: Union[str, List[str]], embeddings_file: str, top_k: int = 20) -> Dict[str, Any]:
"""执行语义搜索,通过调用 FastAPI 接口"""
# 处理查询输入
if isinstance(queries, str):
queries = [queries]
# 验证查询列表
if not queries or not any(q.strip() for q in queries):
return {
"content": [
{
"type": "text",
"text": "Error: Queries cannot be empty"
}
]
}
# 过滤空查询
queries = [q.strip() for q in queries if q.strip()]
try:
# FastAPI 服务地址
fastapi_url = os.getenv('FASTAPI_URL', 'http://127.0.0.1:8001')
api_endpoint = f"{fastapi_url}/api/v1/semantic-search"
# 处理每个查询
all_results = []
resolved_embeddings_file = resolve_file_path(embeddings_file)
for query in queries:
# 调用 FastAPI 接口
request_data = {
"embedding_file": resolved_embeddings_file,
"query": query,
"top_k": top_k,
"min_score": 0.0
}
response = requests.post(
api_endpoint,
json=request_data,
timeout=30
)
if response.status_code == 200:
result_data = response.json()
if result_data.get("success"):
for res in result_data.get("results", []):
all_results.append({
'query': query,
'rank': res["rank"],
'content': res["content"],
'similarity_score': res["score"],
'file_path': embeddings_file
})
else:
print(f"搜索失败: {result_data.get('error', '未知错误')}")
else:
print(f"API 调用失败: {response.status_code} - {response.text}")
if not all_results:
return {
"content": [
{
"type": "text",
"text": "No matching results found"
}
]
}
# 按相似度分数排序所有结果
all_results.sort(key=lambda x: x['similarity_score'], reverse=True)
# 格式化输出
formatted_lines = []
formatted_lines.append(f"Found {len(all_results)} results for {len(queries)} queries:")
formatted_lines.append("")
for i, result in enumerate(all_results):
formatted_lines.append(f"#{i+1} [query: '{result['query']}'] [similarity:{result['similarity_score']:.4f}]: {result['content']}")
formatted_output = "\n".join(formatted_lines)
return {
"content": [
{
"type": "text",
"text": formatted_output
}
]
}
except requests.exceptions.RequestException as e:
return {
"content": [
{
"type": "text",
"text": f"API request failed: {str(e)}"
}
]
}
except Exception as e:
return {
"content": [
{
"type": "text",
"text": f"Search error: {str(e)}"
}
]
}
async def handle_request(request: Dict[str, Any]) -> Dict[str, Any]:
"""Handle MCP request"""
try:
method = request.get("method")
params = request.get("params", {})
request_id = request.get("id")
if method == "initialize":
return create_initialize_response(request_id, "semantic-search")
elif method == "ping":
return create_ping_response(request_id)
elif method == "tools/list":
# 从 JSON 文件加载工具定义
tools = load_tools_from_json("semantic_search_tools.json")
return create_tools_list_response(request_id, tools)
elif method == "tools/call":
tool_name = params.get("name")
arguments = params.get("arguments", {})
if tool_name == "semantic_search":
queries = arguments.get("queries", [])
# 兼容旧的query参数
if not queries and "query" in arguments:
queries = arguments.get("query", "")
embeddings_file = arguments.get("embeddings_file", "")
top_k = arguments.get("top_k", 20)
result = semantic_search(queries, embeddings_file, top_k)
return {
"jsonrpc": "2.0",
"id": request_id,
"result": result
}
else:
return create_error_response(request_id, -32601, f"Unknown tool: {tool_name}")
else:
return create_error_response(request_id, -32601, f"Unknown method: {method}")
except Exception as e:
return create_error_response(request.get("id"), -32603, f"Internal error: {str(e)}")
async def main():
"""Main entry point."""
await handle_mcp_streaming(handle_request)
if __name__ == "__main__":
asyncio.run(main())