qwen_agent/utils/settings.py
朱潮 342932030f feat(skills): add skill management API module
- Create new skill_manager.py with list and upload endpoints
- Add GET /api/v1/skill/list to retrieve official and user skills
- Add POST /api/v1/skill/upload for skill file upload
- Parse SKILL.md frontmatter to extract name and description
- Move skill upload endpoint from files.py to skill_manager.py
- Add SKILLS_DIR configuration to settings.py
- Register skill_manager router in fastapi_app.py

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2026-01-07 19:45:04 +08:00

70 lines
2.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
# 必填参数
# API Settings
BACKEND_HOST = os.getenv("BACKEND_HOST", "https://api-dev.gptbase.ai")
MASTERKEY = os.getenv("MASTERKEY", "master")
FASTAPI_URL = os.getenv('FASTAPI_URL', 'http://127.0.0.1:8001')
# LLM Token Settings
MAX_CONTEXT_TOKENS = int(os.getenv("MAX_CONTEXT_TOKENS", 262144))
MAX_OUTPUT_TOKENS = int(os.getenv("MAX_OUTPUT_TOKENS", 8000))
# 可选参数
# Summarization Settings
SUMMARIZATION_MAX_TOKENS = MAX_CONTEXT_TOKENS - MAX_OUTPUT_TOKENS - 1000
SUMMARIZATION_MESSAGES_TO_KEEP = int(os.getenv("SUMMARIZATION_MESSAGES_TO_KEEP", 20))
# Agent Cache Settings
TOOL_CACHE_MAX_SIZE = int(os.getenv("TOOL_CACHE_MAX_SIZE", 20))
TOOL_CACHE_TTL = int(os.getenv("TOOL_CACHE_TTL", 180))
TOOL_CACHE_AUTO_RENEW = os.getenv("TOOL_CACHE_AUTO_RENEW", "true") == "true"
# Project Settings
PROJECT_DATA_DIR = os.getenv("PROJECT_DATA_DIR", "./projects/data")
SKILLS_DIR = os.getenv("SKILLS_DIR", "./skills")
# Tokenizer Settings
TOKENIZERS_PARALLELISM = os.getenv("TOKENIZERS_PARALLELISM", "true")
# Embedding Model Settings
SENTENCE_TRANSFORMER_MODEL = os.getenv("SENTENCE_TRANSFORMER_MODEL", "TaylorAI/gte-tiny")
# Tool Output Length Control Settings
TOOL_OUTPUT_MAX_LENGTH = int(SUMMARIZATION_MAX_TOKENS/4)
TOOL_OUTPUT_TRUNCATION_STRATEGY = os.getenv("TOOL_OUTPUT_TRUNCATION_STRATEGY", "smart")
# THINKING ENABLE
DEFAULT_THINKING_ENABLE = os.getenv("DEFAULT_THINKING_ENABLE", "true") == "true"
# MCP Tool Timeout Settings
MCP_HTTP_TIMEOUT = int(os.getenv("MCP_HTTP_TIMEOUT", 60)) # HTTP 请求超时(秒)
MCP_SSE_READ_TIMEOUT = int(os.getenv("MCP_SSE_READ_TIMEOUT", 300)) # SSE 读取超时(秒)
# ============================================================
# PostgreSQL Checkpoint Configuration
# ============================================================
# PostgreSQL 连接字符串
# 格式: postgresql://user:password@host:port/database
CHECKPOINT_DB_URL = os.getenv("CHECKPOINT_DB_URL", "postgresql://postgres:AeEGDB0b7Z5GK0E2tblt@dev-circleo-pg.celp3nik7oaq.ap-northeast-1.rds.amazonaws.com:5432/gptbase")
#CHECKPOINT_DB_URL = os.getenv("CHECKPOINT_DB_URL", "postgresql://moshui:@localhost:5432/moshui")
# 连接池大小
# 同时可以持有的最大连接数
CHECKPOINT_POOL_SIZE = int(os.getenv("CHECKPOINT_POOL_SIZE", "20"))
# Checkpoint 自动清理配置
# 是否启用自动清理旧 session
CHECKPOINT_CLEANUP_ENABLED = os.getenv("CHECKPOINT_CLEANUP_ENABLED", "true") == "true"
# 清理多少天前未活动的 thread天数
CHECKPOINT_CLEANUP_INACTIVE_DAYS = int(os.getenv("CHECKPOINT_CLEANUP_INACTIVE_DAYS", "3"))
# 清理间隔(小时)
# 每隔多少小时执行一次清理任务
CHECKPOINT_CLEANUP_INTERVAL_HOURS = int(os.getenv("CHECKPOINT_CLEANUP_INTERVAL_HOURS", "24"))