168 lines
6.6 KiB
Python
168 lines
6.6 KiB
Python
from ast import Str
|
||
from langchain.agents.middleware import AgentState, AgentMiddleware, ModelRequest, ModelResponse
|
||
from langchain_core.messages import convert_to_openai_messages
|
||
from agent.prompt_loader import load_guideline_prompt
|
||
from utils.fastapi_utils import (extract_block_from_system_prompt, format_messages_to_chat_history, get_user_last_message_content)
|
||
from langchain.chat_models import BaseChatModel
|
||
from langgraph.runtime import Runtime
|
||
|
||
from langchain_core.messages import SystemMessage
|
||
from typing import Any, Callable
|
||
from langchain_core.callbacks import BaseCallbackHandler
|
||
from langchain_core.outputs import LLMResult
|
||
from .agent_config import AgentConfig
|
||
import logging
|
||
import re
|
||
|
||
logger = logging.getLogger('app')
|
||
|
||
|
||
class GuidelineMiddleware(AgentMiddleware):
|
||
def __init__(self, model:BaseChatModel, config:AgentConfig, prompt: str):
|
||
self.model = model
|
||
self.config = config # 保存完整 config,用于访问 _mem0_context
|
||
self.bot_id = config.bot_id
|
||
|
||
processed_system_prompt, guidelines, tool_description, scenarios, terms_list = extract_block_from_system_prompt(prompt)
|
||
|
||
self.processed_system_prompt = processed_system_prompt
|
||
self.guidelines = guidelines
|
||
self.tool_description = tool_description
|
||
self.scenarios = scenarios
|
||
|
||
self.language = config.language
|
||
self.user_identifier = config.user_identifier
|
||
|
||
self.terms_list = terms_list
|
||
self.messages = config.messages
|
||
|
||
if not self.guidelines:
|
||
self.guidelines = """
|
||
1. General Inquiries
|
||
Condition: User inquiries about products, policies, troubleshooting, factual questions, etc.
|
||
Action: Priority given to invoking the 【Knowledge Base Retrieval】 tool to query the knowledge base.
|
||
|
||
2.Social Dialogue
|
||
Condition: User intent involves small talk, greetings, expressions of thanks, compliments, or other non-substantive conversations.
|
||
Action: Provide concise, friendly, and personified natural responses.
|
||
"""
|
||
if not self.tool_description:
|
||
self.tool_description = """
|
||
- **Knowledge Base Retrieval**: For knowledge queries/other inquiries, prioritize searching the knowledge base → rag_retrieve-rag_retrieve
|
||
"""
|
||
|
||
def get_guideline_prompt(self, config: AgentConfig) -> str:
|
||
"""生成 guideline 提示词
|
||
|
||
Args:
|
||
config: AgentConfig 对象,包含 _session_history 和 _mem0_context
|
||
|
||
Returns:
|
||
str: 生成的 guideline 提示词
|
||
"""
|
||
messages = convert_to_openai_messages(config._session_history)
|
||
memory_text = config._mem0_context
|
||
|
||
# 处理terms(修改 self.processed_system_prompt)
|
||
self.get_term_analysis(messages)
|
||
|
||
guideline_prompt = ""
|
||
if self.guidelines:
|
||
chat_history = format_messages_to_chat_history(messages)
|
||
guideline_prompt = load_guideline_prompt(chat_history, memory_text, self.guidelines, self.tool_description, self.scenarios, self.language, self.user_identifier)
|
||
|
||
return guideline_prompt
|
||
|
||
def get_term_analysis(self, messages: list[dict[str, Any]]) -> str:
|
||
## 处理terms
|
||
terms_analysis = ""
|
||
if self.terms_list:
|
||
logger.info(f"Processing terms: {len(self.terms_list)} terms")
|
||
try:
|
||
from embedding.embedding import process_terms_with_embedding
|
||
query_text = get_user_last_message_content(messages)
|
||
terms_analysis = process_terms_with_embedding(terms_list, self.bot_id, query_text)
|
||
if terms_analysis:
|
||
self.processed_system_prompt = self.processed_system_prompt.replace("#terms#", terms_analysis)
|
||
logger.info(f"Terms analysis completed: {len(terms_analysis)} chars")
|
||
except Exception as e:
|
||
logger.error(f"Error processing terms with embedding: {e}")
|
||
terms_analysis = ""
|
||
else:
|
||
# 当terms_list为空时,删除对应的pkl缓存文件
|
||
try:
|
||
import os
|
||
cache_file = f"projects/cache/{self.bot_id}_terms.pkl"
|
||
if os.path.exists(cache_file):
|
||
os.remove(cache_file)
|
||
logger.info(f"Removed empty terms cache file: {cache_file}")
|
||
except Exception as e:
|
||
logger.error(f"Error removing terms cache file: {e}")
|
||
return terms_analysis
|
||
|
||
|
||
|
||
def before_agent(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
|
||
if not self.guidelines:
|
||
return None
|
||
|
||
guideline_prompt = self.get_guideline_prompt(self.config)
|
||
# 准备完整的消息列表
|
||
messages = state['messages'].copy()
|
||
|
||
# 将guideline_prompt作为系统消息添加到消息列表
|
||
system_message = SystemMessage(content=guideline_prompt)
|
||
|
||
messages = [system_message,messages[-1]]
|
||
|
||
# 使用回调处理器调用模型
|
||
response = self.model.invoke(
|
||
messages,
|
||
config={"metadata": {"message_tag": "THINK"}}
|
||
)
|
||
|
||
response.additional_kwargs["message_tag"] = "THINK"
|
||
response.content = f"<think>{response.content}</think>"
|
||
|
||
# 将响应添加到原始消息列表
|
||
state['messages'] = state['messages'] + [response]
|
||
return state
|
||
|
||
async def abefore_agent(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None:
|
||
if not self.guidelines:
|
||
return None
|
||
# 准备完整的消息列表
|
||
messages = state['messages'].copy()
|
||
|
||
guideline_prompt = self.get_guideline_prompt(self.config)
|
||
|
||
# 将guideline_prompt作为系统消息添加到消息列表
|
||
system_message = SystemMessage(content=guideline_prompt)
|
||
messages = [system_message,messages[-1]]
|
||
|
||
# 使用回调处理器调用模型
|
||
response = await self.model.ainvoke(
|
||
messages,
|
||
config={"metadata": {"message_tag": "THINK"}}
|
||
)
|
||
response.additional_kwargs["message_tag"] = "THINK"
|
||
response.content = f"<think>{response.content}</think>"
|
||
|
||
# 将响应添加到原始消息列表
|
||
state['messages'] = state['messages'] + [response]
|
||
return state
|
||
|
||
def wrap_model_call(
|
||
self,
|
||
request: ModelRequest,
|
||
handler: Callable[[ModelRequest], ModelResponse],
|
||
) -> ModelResponse:
|
||
return handler(request.override(system_prompt=self.processed_system_prompt))
|
||
|
||
async def awrap_model_call(
|
||
self,
|
||
request: ModelRequest,
|
||
handler: Callable[[ModelRequest], ModelResponse],
|
||
) -> ModelResponse:
|
||
return await handler(request.override(system_prompt=self.processed_system_prompt))
|