- Add create_custom_cli_agent function to support custom workspace_root
- Set shell workspace to ~/.deepagents/{bot_id} for deep_agent type
- Pass system_prompt to create_custom_cli_agent for proper context
- Fix duplicate <env> tag in system_prompt_deep_agent.md
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
376 lines
15 KiB
Python
376 lines
15 KiB
Python
import json
|
||
import logging
|
||
import time
|
||
import copy
|
||
from pathlib import Path
|
||
from typing import Any, Dict
|
||
from langchain.chat_models import init_chat_model
|
||
from deepagents import create_deep_agent
|
||
from deepagents.backends import CompositeBackend
|
||
from deepagents.backends.filesystem import FilesystemBackend
|
||
from deepagents.backends.sandbox import SandboxBackendProtocol
|
||
from deepagents_cli.agent import create_cli_agent
|
||
from langchain.agents import create_agent
|
||
from langchain.agents.middleware import SummarizationMiddleware
|
||
from langchain_mcp_adapters.client import MultiServerMCPClient
|
||
from sympy.printing.cxx import none
|
||
from utils.fastapi_utils import detect_provider
|
||
from .guideline_middleware import GuidelineMiddleware
|
||
from .tool_output_length_middleware import ToolOutputLengthMiddleware
|
||
from .tool_use_cleanup_middleware import ToolUseCleanupMiddleware
|
||
from utils.settings import SUMMARIZATION_MAX_TOKENS, SUMMARIZATION_MESSAGES_TO_KEEP, TOOL_OUTPUT_MAX_LENGTH, MCP_HTTP_TIMEOUT, MCP_SSE_READ_TIMEOUT
|
||
from agent.agent_config import AgentConfig
|
||
from agent.prompt_loader import load_system_prompt_async, load_mcp_settings_async
|
||
from agent.agent_memory_cache import get_memory_cache_manager
|
||
from .checkpoint_utils import prepare_checkpoint_message
|
||
from langgraph.checkpoint.postgres.aio import AsyncPostgresSaver
|
||
from langgraph.checkpoint.memory import InMemorySaver
|
||
from langchain.tools import BaseTool
|
||
from langchain_core.language_models import BaseChatModel
|
||
from langgraph.pregel import Pregel
|
||
from deepagents_cli.shell import ShellMiddleware
|
||
from deepagents_cli.agent_memory import AgentMemoryMiddleware
|
||
from deepagents_cli.skills import SkillsMiddleware
|
||
from deepagents_cli.config import settings, get_default_coding_instructions
|
||
import os
|
||
|
||
# 全局 MemorySaver 实例
|
||
# from langgraph.checkpoint.memory import MemorySaver
|
||
# _global_checkpointer = MemorySaver()
|
||
|
||
logger = logging.getLogger('app')
|
||
# Utility functions
|
||
def read_system_prompt():
|
||
"""读取通用的无状态系统prompt"""
|
||
with open("./prompt/system_prompt_default.md", "r", encoding="utf-8") as f:
|
||
return f.read().strip()
|
||
|
||
|
||
def read_mcp_settings():
|
||
"""读取MCP工具配置"""
|
||
with open("./mcp/mcp_settings.json", "r") as f:
|
||
mcp_settings_json = json.load(f)
|
||
return mcp_settings_json
|
||
|
||
|
||
async def get_tools_from_mcp(mcp):
|
||
"""从MCP配置中提取工具(带缓存)"""
|
||
start_time = time.time()
|
||
# 防御式处理:确保 mcp 是列表且长度大于 0,且包含 mcpServers
|
||
if not isinstance(mcp, list) or len(mcp) == 0 or "mcpServers" not in mcp[0]:
|
||
logger.info(f"get_tools_from_mcp: invalid mcp config, elapsed: {time.time() - start_time:.3f}s")
|
||
return []
|
||
|
||
# 尝试从缓存获取
|
||
cache_manager = get_memory_cache_manager()
|
||
cached_tools = cache_manager.get_mcp_tools(mcp)
|
||
if cached_tools is not None:
|
||
logger.info(f"get_tools_from_mcp: cached {len(cached_tools)} tools, elapsed: {time.time() - start_time:.3f}s")
|
||
return cached_tools
|
||
|
||
# 深拷贝 mcp 配置,避免修改原始配置(影响缓存键)
|
||
mcp_copy = copy.deepcopy(mcp)
|
||
|
||
# 修改 mcp_copy[0]["mcpServers"] 列表,把 type 字段改成 transport
|
||
# 如果没有 transport,则根据是否存在 url 默认 transport 为 http 或 stdio
|
||
for cfg in mcp_copy[0]["mcpServers"].values():
|
||
if "type" in cfg:
|
||
cfg.pop("type")
|
||
if "transport" not in cfg:
|
||
cfg["transport"] = "http" if "url" in cfg else "stdio"
|
||
|
||
# 为 HTTP/ SSE 传输的 MCP 服务器添加超时配置
|
||
# 如果配置中未设置超时,使用全局默认值
|
||
if cfg.get("transport") in ("http", "sse"):
|
||
if "timeout" not in cfg:
|
||
cfg["timeout"] = MCP_HTTP_TIMEOUT
|
||
if "sse_read_timeout" not in cfg:
|
||
cfg["sse_read_timeout"] = MCP_SSE_READ_TIMEOUT
|
||
|
||
# 确保 mcp_copy[0]["mcpServers"] 是字典类型
|
||
if not isinstance(mcp_copy[0]["mcpServers"], dict):
|
||
logger.info(f"get_tools_from_mcp: mcpServers is not dict, elapsed: {time.time() - start_time:.3f}s")
|
||
return []
|
||
|
||
try:
|
||
mcp_client = MultiServerMCPClient(mcp_copy[0]["mcpServers"])
|
||
mcp_tools = await mcp_client.get_tools()
|
||
|
||
# 缓存结果
|
||
cache_manager.set_mcp_tools(mcp, mcp_tools)
|
||
|
||
logger.info(f"get_tools_from_mcp: loaded {len(mcp_tools)} tools, elapsed: {time.time() - start_time:.3f}s")
|
||
return mcp_tools
|
||
except Exception as e:
|
||
# 发生异常时返回空列表,避免上层调用报错
|
||
logger.info(f"get_tools_from_mcp: error {e}, elapsed: {time.time() - start_time:.3f}s")
|
||
return []
|
||
|
||
async def init_agent(config: AgentConfig):
|
||
"""
|
||
初始化 Agent,支持持久化内存和对话摘要
|
||
|
||
注意:不再缓存 agent,只缓存 mcp_tools
|
||
返回 (agent, checkpointer) 元组,调用后需要归还 checkpointer
|
||
|
||
Args:
|
||
config: AgentConfig 对象,包含所有初始化参数
|
||
|
||
Returns:
|
||
(agent, checkpointer) 元组
|
||
"""
|
||
|
||
|
||
|
||
|
||
# 加载配置
|
||
final_system_prompt = await load_system_prompt_async(
|
||
config.project_dir, config.language, config.system_prompt, config.robot_type, config.bot_id, config.user_identifier
|
||
)
|
||
final_mcp_settings = await load_mcp_settings_async(
|
||
config.project_dir, config.mcp_settings, config.bot_id, config.robot_type
|
||
)
|
||
|
||
# 如果没有提供mcp,使用config中的mcp_settings
|
||
mcp_settings = final_mcp_settings if final_mcp_settings else read_mcp_settings()
|
||
system_prompt = final_system_prompt if final_system_prompt else read_system_prompt()
|
||
|
||
config.system_prompt = mcp_settings
|
||
config.mcp_settings = system_prompt
|
||
|
||
# 获取 mcp_tools(缓存逻辑已内置到 get_tools_from_mcp 中)
|
||
mcp_tools = await get_tools_from_mcp(mcp_settings)
|
||
|
||
# 检测或使用指定的提供商
|
||
model_provider, base_url = detect_provider(config.model_name, config.model_server)
|
||
# 构建模型参数
|
||
model_kwargs = {
|
||
"model": config.model_name,
|
||
"model_provider": model_provider,
|
||
"temperature": 0.8,
|
||
"base_url": base_url,
|
||
"api_key": config.api_key
|
||
}
|
||
if config.generate_cfg:
|
||
model_kwargs.update(config.generate_cfg)
|
||
llm_instance = init_chat_model(**model_kwargs)
|
||
|
||
# 创建新的 agent(不再缓存)
|
||
logger.info(f"Creating new agent for session: {getattr(config, 'session_id', 'no-session')}")
|
||
|
||
checkpointer = None
|
||
create_start = time.time()
|
||
if config.robot_type == "deep_agent":
|
||
# 使用 DeepAgentX 创建 agent,自定义 workspace_root
|
||
workspace_root = str(Path.home() / ".deepagents" / config.bot_id)
|
||
agent, composite_backend = create_custom_cli_agent(
|
||
model=llm_instance,
|
||
assistant_id=config.bot_id,
|
||
system_prompt=system_prompt,
|
||
tools=mcp_tools,
|
||
auto_approve=True,
|
||
workspace_root=workspace_root
|
||
)
|
||
else:
|
||
# 构建中间件列表
|
||
middleware = []
|
||
# 首先添加 ToolUseCleanupMiddleware 来清理孤立的 tool_use
|
||
middleware.append(ToolUseCleanupMiddleware())
|
||
# 只有在 enable_thinking 为 True 时才添加 GuidelineMiddleware
|
||
if config.enable_thinking:
|
||
middleware.append(GuidelineMiddleware(llm_instance, config, system_prompt))
|
||
|
||
# 添加工具输出长度控制中间件
|
||
tool_output_middleware = ToolOutputLengthMiddleware(
|
||
max_length=getattr(config.generate_cfg, 'tool_output_max_length', None) if config.generate_cfg else None or TOOL_OUTPUT_MAX_LENGTH,
|
||
truncation_strategy=getattr(config.generate_cfg, 'tool_output_truncation_strategy', 'smart') if config.generate_cfg else 'smart',
|
||
tool_filters=getattr(config.generate_cfg, 'tool_output_filters', None) if config.generate_cfg else None,
|
||
exclude_tools=getattr(config.generate_cfg, 'tool_output_exclude', []) if config.generate_cfg else [],
|
||
preserve_code_blocks=getattr(config.generate_cfg, 'preserve_code_blocks', True) if config.generate_cfg else True,
|
||
preserve_json=getattr(config.generate_cfg, 'preserve_json', True) if config.generate_cfg else True
|
||
)
|
||
middleware.append(tool_output_middleware)
|
||
|
||
# 从连接池获取 checkpointer
|
||
if config.session_id:
|
||
from .checkpoint_manager import get_checkpointer_manager
|
||
manager = get_checkpointer_manager()
|
||
checkpointer = manager.checkpointer
|
||
await prepare_checkpoint_message(config, checkpointer)
|
||
summarization_middleware = SummarizationMiddleware(
|
||
model=llm_instance,
|
||
max_tokens_before_summary=SUMMARIZATION_MAX_TOKENS,
|
||
messages_to_keep=SUMMARIZATION_MESSAGES_TO_KEEP,
|
||
summary_prompt="请简洁地总结以上对话的要点,包括重要的用户信息、讨论过的话题和关键结论。"
|
||
)
|
||
middleware.append(summarization_middleware)
|
||
|
||
agent = create_agent(
|
||
model=llm_instance,
|
||
system_prompt=system_prompt,
|
||
tools=mcp_tools,
|
||
middleware=middleware,
|
||
checkpointer=checkpointer
|
||
)
|
||
logger.info(f"create {config.robot_type} elapsed: {time.time() - create_start:.3f}s")
|
||
return agent, checkpointer
|
||
|
||
|
||
def create_custom_cli_agent(
|
||
model: str | BaseChatModel,
|
||
assistant_id: str,
|
||
*,
|
||
tools: list[BaseTool] | None = None,
|
||
sandbox: SandboxBackendProtocol | None = None,
|
||
sandbox_type: str | None = None,
|
||
system_prompt: str | None = None,
|
||
auto_approve: bool = False,
|
||
enable_memory: bool = True,
|
||
enable_skills: bool = True,
|
||
enable_shell: bool = True,
|
||
workspace_root: str | None = None,
|
||
) -> tuple[Pregel, CompositeBackend]:
|
||
"""Create a CLI-configured agent with custom workspace_root for shell commands.
|
||
|
||
This is a custom version of create_cli_agent that allows specifying a custom
|
||
workspace_root for shell commands instead of using Path.cwd().
|
||
|
||
Args:
|
||
model: LLM model to use (e.g., "anthropic:claude-sonnet-4-5-20250929")
|
||
assistant_id: Agent identifier for memory/state storage
|
||
tools: Additional tools to provide to agent (default: empty list)
|
||
sandbox: Optional sandbox backend for remote execution (e.g., ModalBackend).
|
||
If None, uses local filesystem + shell.
|
||
sandbox_type: Type of sandbox provider ("modal", "runloop", "daytona").
|
||
Used for system prompt generation.
|
||
system_prompt: Override the default system prompt. If None, generates one
|
||
based on sandbox_type and assistant_id.
|
||
auto_approve: If True, automatically approves all tool calls without human
|
||
confirmation. Useful for automated workflows.
|
||
enable_memory: Enable AgentMemoryMiddleware for persistent memory
|
||
enable_skills: Enable SkillsMiddleware for custom agent skills
|
||
enable_shell: Enable ShellMiddleware for local shell execution (only in local mode)
|
||
workspace_root: Working directory for shell commands. If None, uses Path.cwd().
|
||
|
||
Returns:
|
||
2-tuple of (agent_graph, composite_backend)
|
||
- agent_graph: Configured LangGraph Pregel instance ready for execution
|
||
- composite_backend: CompositeBackend for file operations
|
||
"""
|
||
if tools is None:
|
||
tools = []
|
||
|
||
# Setup agent directory for persistent memory (if enabled)
|
||
if enable_memory or enable_skills:
|
||
agent_dir = settings.ensure_agent_dir(assistant_id)
|
||
agent_md = agent_dir / "agent.md"
|
||
if not agent_md.exists():
|
||
source_content = get_default_coding_instructions()
|
||
agent_md.write_text(source_content)
|
||
|
||
# Skills directories (if enabled)
|
||
skills_dir = none
|
||
if enable_skills:
|
||
skills_dir = settings.ensure_user_skills_dir(assistant_id)
|
||
|
||
# Build middleware stack based on enabled features
|
||
agent_middleware = []
|
||
|
||
# CONDITIONAL SETUP: Local vs Remote Sandbox
|
||
if sandbox is None:
|
||
# ========== LOCAL MODE ==========
|
||
composite_backend = CompositeBackend(
|
||
default=FilesystemBackend(root_dir=workspace_root), # Current working directory
|
||
routes={}, # No virtualization - use real paths
|
||
)
|
||
|
||
# Add memory middleware
|
||
if enable_memory:
|
||
agent_middleware.append(
|
||
AgentMemoryMiddleware(settings=settings, assistant_id=assistant_id)
|
||
)
|
||
|
||
# Add skills middleware
|
||
if enable_skills:
|
||
agent_middleware.append(
|
||
SkillsMiddleware(
|
||
skills_dir=skills_dir,
|
||
assistant_id=assistant_id
|
||
)
|
||
)
|
||
|
||
# Add shell middleware (only in local mode)
|
||
if enable_shell:
|
||
# Create environment for shell commands
|
||
# Restore user's original LANGSMITH_PROJECT so their code traces separately
|
||
shell_env = os.environ.copy()
|
||
if settings.user_langchain_project:
|
||
shell_env["LANGSMITH_PROJECT"] = settings.user_langchain_project
|
||
|
||
# Use custom workspace_root if provided, otherwise use current directory
|
||
shell_workspace = workspace_root if workspace_root is not None else str(Path.cwd())
|
||
|
||
agent_middleware.append(
|
||
ShellMiddleware(
|
||
workspace_root=shell_workspace,
|
||
env=shell_env,
|
||
)
|
||
)
|
||
else:
|
||
# ========== REMOTE SANDBOX MODE ==========
|
||
composite_backend = CompositeBackend(
|
||
default=sandbox, # Remote sandbox (ModalBackend, etc.)
|
||
routes={}, # No virtualization
|
||
)
|
||
|
||
# Add memory middleware
|
||
if enable_memory:
|
||
agent_middleware.append(
|
||
AgentMemoryMiddleware(settings=settings, assistant_id=assistant_id)
|
||
)
|
||
|
||
# Add skills middleware
|
||
if enable_skills:
|
||
agent_middleware.append(
|
||
SkillsMiddleware(
|
||
skills_dir=skills_dir,
|
||
assistant_id=assistant_id,
|
||
project_skills_dir=project_skills_dir,
|
||
)
|
||
)
|
||
|
||
# Note: Shell middleware not used in sandbox mode
|
||
# File operations and execute tool are provided by the sandbox backend
|
||
|
||
# Get or use custom system prompt
|
||
if system_prompt is None:
|
||
# Import get_system_prompt from deepagents_cli.agent
|
||
from deepagents_cli.agent import get_system_prompt as _get_system_prompt
|
||
system_prompt = _get_system_prompt(assistant_id=assistant_id, sandbox_type=sandbox_type)
|
||
|
||
# Import InterruptOnConfig
|
||
from langchain.agents.middleware import InterruptOnConfig
|
||
|
||
# Configure interrupt_on based on auto_approve setting
|
||
if auto_approve:
|
||
# No interrupts - all tools run automatically
|
||
interrupt_on = {}
|
||
else:
|
||
# Full HITL for destructive operations - import from deepagents_cli.agent
|
||
from deepagents_cli.agent import _add_interrupt_on
|
||
interrupt_on = _add_interrupt_on()
|
||
|
||
# Import config
|
||
from deepagents_cli.config import config
|
||
|
||
# Create the agent
|
||
agent = create_deep_agent(
|
||
model=model,
|
||
system_prompt=system_prompt,
|
||
tools=tools,
|
||
backend=composite_backend,
|
||
middleware=agent_middleware,
|
||
interrupt_on=interrupt_on,
|
||
checkpointer=InMemorySaver(),
|
||
).with_config(config)
|
||
return agent, composite_backend |