Add Memori (https://github.com/MemoriLabs/Memori) integration for persistent cross-session memory capabilities in both create_agent and create_deep_agent. ## New Files - agent/memori_config.py: MemoriConfig dataclass for configuration - agent/memori_manager.py: MemoriManager for connection and instance management - agent/memori_middleware.py: MemoriMiddleware for memory recall/storage - tests/: Unit tests for Memori components ## Modified Files - agent/agent_config.py: Added enable_memori, memori_semantic_search_top_k, etc. - agent/deep_assistant.py: Integrated MemoriMiddleware into init_agent() - utils/settings.py: Added MEMORI_* environment variables - pyproject.toml: Added memori>=3.1.0 dependency ## Features - Semantic memory search with configurable top-k and threshold - Multi-tenant isolation (entity_id=user, process_id=bot, session_id) - Memory injection into system prompt - Background asynchronous memory augmentation - Graceful degradation when Memori is unavailable 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
88 lines
2.4 KiB
Python
88 lines
2.4 KiB
Python
"""
|
|
Memori 配置数据类
|
|
用于管理 Memori 长期记忆系统的配置参数
|
|
"""
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
|
|
@dataclass
|
|
class MemoriConfig:
|
|
"""Memori 长期记忆配置类"""
|
|
|
|
# 功能开关
|
|
enabled: bool = False
|
|
|
|
# API 配置
|
|
api_key: Optional[str] = None
|
|
|
|
# 语义搜索配置
|
|
semantic_search_top_k: int = 5
|
|
semantic_search_threshold: float = 0.7
|
|
semantic_search_embeddings_limit: int = 1000
|
|
|
|
# 记忆注入配置
|
|
inject_memory_to_system_prompt: bool = True
|
|
memory_prompt_template: str = (
|
|
"\n\n=== 相关记忆 ===\n"
|
|
"以下是从历史对话中检索到的相关信息,可以帮助你更好地回答用户问题:\n"
|
|
"{memories}\n"
|
|
"==================\n"
|
|
)
|
|
|
|
# 增强配置
|
|
augmentation_enabled: bool = True
|
|
augmentation_wait_timeout: Optional[float] = None # None 表示后台异步执行
|
|
|
|
# 多租户配置
|
|
entity_id: Optional[str] = None # 用户标识
|
|
process_id: Optional[str] = None # Bot 标识
|
|
session_id: Optional[str] = None # 会话标识
|
|
|
|
def get_attribution_tuple(self) -> tuple[str, str]:
|
|
"""获取 attribution 所需的元组 (entity_id, process_id)
|
|
|
|
Returns:
|
|
(entity_id, process_id) 元组
|
|
"""
|
|
if not self.entity_id or not self.process_id:
|
|
raise ValueError("entity_id and process_id are required for attribution")
|
|
return (self.entity_id, self.process_id)
|
|
|
|
def is_enabled(self) -> bool:
|
|
"""检查 Memori 功能是否启用
|
|
|
|
Returns:
|
|
bool: 是否启用
|
|
"""
|
|
return self.enabled
|
|
|
|
def get_memory_prompt(self, memories: list[str]) -> str:
|
|
"""根据记忆列表生成注入提示词
|
|
|
|
Args:
|
|
memories: 记忆内容列表
|
|
|
|
Returns:
|
|
str: 格式化的记忆提示词
|
|
"""
|
|
if not memories:
|
|
return ""
|
|
|
|
memory_text = "\n".join(f"- {m}" for m in memories)
|
|
return self.memory_prompt_template.format(memories=memory_text)
|
|
|
|
def with_session(self, session_id: str) -> "MemoriConfig":
|
|
"""创建带有新 session_id 的配置副本
|
|
|
|
Args:
|
|
session_id: 新的会话 ID
|
|
|
|
Returns:
|
|
新的 MemoriConfig 实例
|
|
"""
|
|
new_config = MemoriConfig(**self.__dict__)
|
|
new_config.session_id = session_id
|
|
return new_config
|