--- name: rag-retrieve description: RAG retrieval skill for querying and retrieving relevant documents from knowledge base. Use this skill when users need to search documentation, retrieve knowledge base articles, or get context from a vector database. Supports semantic search with configurable top-k results. --- # RAG Retrieve ## Skill Structure This is a **self-contained skill package** that can be distributed independently. The skill includes its own scripts and configuration: ``` rag-retrieve/ ├── SKILL.md # Core instruction file (this file) ├── skill.yaml # Skill metadata ├── scripts/ # Executable scripts │ └── rag_retrieve.py # Main RAG retrieval script ``` ## Overview Query and retrieve relevant documents from a RAG (Retrieval-Augmented Generation) knowledge base using vector search. This skill provides semantic search capabilities with support for multiple bot instances and configurable result limits. ## Required Parameters Before executing any retrieval, you MUST confirm the following required parameters with the user if they are not explicitly provided: | Parameter | Description | Type | |-----------|-------------|------| | **query** | Search query content | string | ### Optional Parameters | Parameter | Description | Type | Default | |-----------|-------------|------|---------| | **top_k** | Maximum number of results | integer | 100 | ### Confirmation Template When the required parameter is missing, ask the user: ``` I need some information to perform the RAG retrieval: 1. Query: What would you like to search for? ``` ## Quick Start Use the `scripts/rag_retrieve.py` script to execute RAG queries: ```bash scripts/rag_retrieve.py --query "your search query" ``` ## Usage Examples ### Basic Query ```bash scripts/rag_retrieve.py --query "How to configure authentication?" ``` ### Search with Specific Top-K ```bash scripts/rag_retrieve.py --query "API error handling" --top-k 50 ``` ### Common Use Cases **Scenario 1: Documentation Search** ```bash scripts/rag_retrieve.py --query "deployment guide" ``` **Scenario 2: Troubleshooting** ```bash scripts/rag_retrieve.py --query "connection timeout error" ``` **Scenario 3: Feature Information** ```bash scripts/rag_retrieve.py --query "enterprise pricing plans" ``` ## Script Usage ### rag_retrieve.py Main script for executing RAG retrieval queries. ```bash scripts/rag_retrieve.py [OPTIONS] ``` **Options:** | Option | Required | Description | Default | |--------|----------|-------------|---------| | `--query`, `-q` | Yes | Search query content | - | | `--top-k`, `-k` | No | Maximum number of results | 100 | **Examples:** ```bash # Basic query scripts/rag_retrieve.py --query "authentication setup" # Custom top-k scripts/rag_retrieve.py --query "API reference" --top-k 20 ``` ## Common Workflows ### Research Mode: Comprehensive Search ```bash scripts/rag_retrieve.py --query "machine learning algorithms" --top-k 100 ``` ### Quick Answer Mode: Focused Search ```bash scripts/rag_retrieve.py --query "password reset" --top-k 10 ``` ### Comparison Mode: Multiple Queries ```bash # Search for related topics scripts/rag_retrieve.py --query "REST API" --top-k 30 scripts/rag_retrieve.py --query "GraphQL API" --top-k 30 ``` ## Resources ### scripts/rag_retrieve.py Executable Python script for RAG retrieval. Handles: - HTTP requests to RAG API - Authentication token generation - Configuration file loading - Error handling and reporting - Markdown response parsing The script can be executed directly without loading into context.