import os # LLM Token Settings MAX_CONTEXT_TOKENS = int(os.getenv("MAX_CONTEXT_TOKENS", 262144)) MAX_OUTPUT_TOKENS = int(os.getenv("MAX_OUTPUT_TOKENS", 8000)) SUMMARIZATION_MAX_TOKENS = MAX_CONTEXT_TOKENS - MAX_OUTPUT_TOKENS - 1000 # Agent Cache Settings AGENT_CACHE_MAX_SIZE = int(os.getenv("AGENT_CACHE_MAX_SIZE", 20)) AGENT_CACHE_TTL = int(os.getenv("AGENT_CACHE_TTL", 180)) AGENT_CACHE_AUTO_RENEW = os.getenv("AGENT_CACHE_AUTO_RENEW", "true") == "true" # API Settings BACKEND_HOST = os.getenv("BACKEND_HOST", "https://api-dev.gptbase.ai") MASTERKEY = os.getenv("MASTERKEY", "master") FASTAPI_URL = os.getenv('FASTAPI_URL', 'http://127.0.0.1:8001') # Project Settings PROJECT_DATA_DIR = os.getenv("PROJECT_DATA_DIR", "./projects/data") # Tokenizer Settings TOKENIZERS_PARALLELISM = os.getenv("TOKENIZERS_PARALLELISM", "true") # Embedding Model Settings SENTENCE_TRANSFORMER_MODEL = os.getenv("SENTENCE_TRANSFORMER_MODEL", "TaylorAI/gte-tiny") # Tool Output Length Control Settings TOOL_OUTPUT_MAX_LENGTH = int(SUMMARIZATION_MAX_TOKENS/4) TOOL_OUTPUT_TRUNCATION_STRATEGY = os.getenv("TOOL_OUTPUT_TRUNCATION_STRATEGY", "smart") # THINKING ENABLE DEFAULT_THINKING_ENABLE = os.getenv("DEFAULT_THINKING_ENABLE", "true") == "true" # MCP Tool Timeout Settings MCP_HTTP_TIMEOUT = int(os.getenv("MCP_HTTP_TIMEOUT", 60)) # HTTP 请求超时(秒) MCP_SSE_READ_TIMEOUT = int(os.getenv("MCP_SSE_READ_TIMEOUT", 300)) # SSE 读取超时(秒) # ============================================================ # SQLite Checkpoint Configuration # ============================================================ # Checkpoint 数据库路径 CHECKPOINT_DB_PATH = os.getenv("CHECKPOINT_DB_PATH", "./projects/memory/checkpoints.db") # 启用 WAL 模式 (Write-Ahead Logging) # WAL 模式允许读写并发,大幅提升并发性能 CHECKPOINT_WAL_MODE = os.getenv("CHECKPOINT_WAL_MODE", "true") == "true" # Busy Timeout (毫秒) # 当数据库被锁定时,等待的最长时间(毫秒) CHECKPOINT_BUSY_TIMEOUT = int(os.getenv("CHECKPOINT_BUSY_TIMEOUT", "10000")) # 连接池大小 # 同时可以持有的最大连接数 CHECKPOINT_POOL_SIZE = int(os.getenv("CHECKPOINT_POOL_SIZE", "30"))