from langchain.agents.middleware import AgentState, AgentMiddleware, ModelRequest, ModelResponse from langchain_core.messages import convert_to_openai_messages from agent.prompt_loader import load_guideline_prompt from utils.fastapi_utils import (extract_block_from_system_prompt, format_messages_to_chat_history, get_user_last_message_content) from langchain.chat_models import BaseChatModel from langgraph.runtime import Runtime from typing import Any, Callable from langchain_core.callbacks import BaseCallbackHandler from langchain_core.outputs import LLMResult import logging import re logger = logging.getLogger('app') class GuidelineMiddleware(AgentMiddleware): def __init__(self, bot_id: str, model:BaseChatModel, prompt: str, robot_type: str, language: str, user_identifier: str): self.model = model self.bot_id = bot_id processed_system_prompt, guidelines, tool_description, scenarios, terms_list = extract_block_from_system_prompt(prompt) self.processed_system_prompt = processed_system_prompt self.guidelines = guidelines self.tool_description = tool_description self.scenarios = scenarios self.language = language self.user_identifier = user_identifier self.robot_type = robot_type self.terms_list = terms_list if self.robot_type == "general_agent": if not self.guidelines: self.guidelines = """ 1. General Inquiries Condition: User inquiries about products, policies, troubleshooting, factual questions, etc. Action: Priority given to invoking the 【Knowledge Base Retrieval】 tool to query the knowledge base. 2.Social Dialogue Condition: User intent involves small talk, greetings, expressions of thanks, compliments, or other non-substantive conversations. Action: Provide concise, friendly, and personified natural responses. """ if not self.tool_description: self.tool_description = """ - **Knowledge Base Retrieval**: For knowledge queries/other inquiries, prioritize searching the knowledge base → rag_retrieve-rag_retrieve """ def get_guideline_prompt(self, messages: list[dict[str, Any]]) -> str: ## 处理terms terms_analysis = self.get_term_analysis(messages) guideline_prompt = "" if self.guidelines: chat_history = format_messages_to_chat_history(messages) query_text = get_user_last_message_content(messages) guideline_prompt = load_guideline_prompt(chat_history, query_text, self.guidelines, self.tool_description, self.scenarios, terms_analysis, self.language, self.user_identifier) return guideline_prompt def get_term_analysis(self, messages: list[dict[str, Any]]) -> str: ## 处理terms terms_analysis = "" if self.terms_list: logger.info(f"Processing terms: {len(self.terms_list)} terms") try: from embedding.embedding import process_terms_with_embedding query_text = get_user_last_message_content(messages) terms_analysis = process_terms_with_embedding(terms_list, self.bot_id, query_text) if terms_analysis: self.processed_system_prompt = self.processed_system_prompt.replace("#terms#", terms_analysis) logger.info(f"Terms analysis completed: {len(terms_analysis)} chars") except Exception as e: logger.error(f"Error processing terms with embedding: {e}") terms_analysis = "" else: # 当terms_list为空时,删除对应的pkl缓存文件 try: import os cache_file = f"projects/cache/{self.bot_id}_terms.pkl" if os.path.exists(cache_file): os.remove(cache_file) logger.info(f"Removed empty terms cache file: {cache_file}") except Exception as e: logger.error(f"Error removing terms cache file: {e}") return terms_analysis def before_agent(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None: if not self.guidelines: return None guideline_prompt = self.get_guideline_prompt(convert_to_openai_messages(state['messages'])) # 使用回调处理器调用模型 response = self.model.invoke( guideline_prompt, config={"callbacks": [BaseCallbackHandler()]} ) # 提取之间的内容作为thinking match = re.search(r'(.*?)', response.content, re.DOTALL) response.additional_kwargs["thinking"] = match.group(1).strip() if match else response.content messages = state['messages']+[response] return { "messages": messages } async def abefore_agent(self, state: AgentState, runtime: Runtime) -> dict[str, Any] | None: if not self.guidelines: return None guideline_prompt = self.get_guideline_prompt(convert_to_openai_messages(state['messages'])) # 使用回调处理器调用模型 response = await self.model.ainvoke( guideline_prompt, config={"callbacks": [BaseCallbackHandler()]} ) # 提取之间的内容作为thinking match = re.search(r'(.*?)', response.content, re.DOTALL) response.additional_kwargs["thinking"] = match.group(1).strip() if match else response.content messages = state['messages']+[response] return { "messages": messages } def wrap_model_call( self, request: ModelRequest, handler: Callable[[ModelRequest], ModelResponse], ) -> ModelResponse: return handler(request.override(system_prompt=self.processed_system_prompt)) async def awrap_model_call( self, request: ModelRequest, handler: Callable[[ModelRequest], ModelResponse], ) -> ModelResponse: return await handler(request.override(system_prompt=self.processed_system_prompt))