修改agent_config

This commit is contained in:
朱潮 2025-12-16 21:26:20 +08:00
parent de72321875
commit e36787fb63
7 changed files with 123 additions and 122 deletions

View File

@ -1,7 +1,7 @@
"""Agent配置类用于管理所有Agent相关的参数"""
from typing import Optional, List, Dict, Any
from dataclasses import dataclass
from typing import Optional, List, Dict, Any, TYPE_CHECKING
from dataclasses import dataclass, field
import logging
import json
@ -20,7 +20,7 @@ class AgentConfig:
# 配置参数
system_prompt: Optional[str] = None
mcp_settings: Optional[List[Dict]] = None
mcp_settings: Optional[List[Dict]] = field(default_factory=list)
robot_type: Optional[str] = "general_agent"
generate_cfg: Optional[Dict] = None
enable_thinking: bool = False
@ -34,6 +34,9 @@ class AgentConfig:
stream: bool = False
tool_response: bool = True
preamble_text: Optional[str] = None
messages: Optional[List] = field(default_factory=list)
logging_handler: Optional['LoggingCallbackHandler'] = None
def to_dict(self) -> Dict[str, Any]:
"""转换为字典格式,用于传递给需要**kwargs的函数"""
@ -53,7 +56,8 @@ class AgentConfig:
'session_id': self.session_id,
'stream': self.stream,
'tool_response': self.tool_response,
'preamble_text': self.preamble_text
'preamble_text': self.preamble_text,
'messages': self.messages,
}
def safe_print(self):
@ -64,8 +68,14 @@ class AgentConfig:
logger.info(f"config={json.dumps(safe_dict, ensure_ascii=False)}")
@classmethod
def from_v1_request(cls, request, api_key: str, project_dir: Optional[str] = None, generate_cfg: Optional[Dict] = None):
def from_v1_request(cls, request, api_key: str, project_dir: Optional[str] = None, generate_cfg: Optional[Dict] = None, messages: Optional[List] = None):
"""从v1请求创建配置"""
# 延迟导入避免循环依赖
from .logging_handler import LoggingCallbackHandler
if messages is None:
messages = []
return cls(
bot_id=request.bot_id,
api_key=api_key,
@ -81,12 +91,20 @@ class AgentConfig:
project_dir=project_dir,
stream=request.stream,
tool_response=request.tool_response,
generate_cfg=generate_cfg
generate_cfg=generate_cfg,
logging_handler=LoggingCallbackHandler(),
messages=messages
)
@classmethod
def from_v2_request(cls, request, bot_config: Dict, project_dir: Optional[str] = None):
def from_v2_request(cls, request, bot_config: Dict, project_dir: Optional[str] = None, messages: Optional[List] = None):
"""从v2请求创建配置"""
# 延迟导入避免循环依赖
from .logging_handler import LoggingCallbackHandler
if messages is None:
messages = []
return cls(
bot_id=request.bot_id,
api_key=bot_config.get("api_key"),
@ -102,5 +120,16 @@ class AgentConfig:
project_dir=project_dir,
stream=request.stream,
tool_response=request.tool_response,
generate_cfg={} # v2接口不传递额外的generate_cfg
)
generate_cfg={}, # v2接口不传递额外的generate_cfg
logging_handler=LoggingCallbackHandler(),
messages=messages
)
def invoke_config(self):
"""返回Langchain需要的配置字典"""
config = {}
if self.logging_handler:
config["callbacks"] = [self.logging_handler]
if self.session_id:
config["configurable"] = {"thread_id": self.session_id}
return config

View File

@ -8,70 +8,13 @@ from langchain.chat_models import init_chat_model
from langchain.agents import create_agent
from langchain.agents.middleware import SummarizationMiddleware
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_core.callbacks import BaseCallbackHandler
from langgraph.checkpoint.memory import MemorySaver
from utils.fastapi_utils import detect_provider
from .guideline_middleware import GuidelineMiddleware
from .tool_output_length_middleware import ToolOutputLengthMiddleware
from utils.settings import SUMMARIZATION_MAX_TOKENS, TOOL_OUTPUT_MAX_LENGTH
from utils.agent_config import AgentConfig
class LoggingCallbackHandler(BaseCallbackHandler):
"""自定义的 CallbackHandler使用项目的 logger 来记录日志"""
def __init__(self, logger_name: str = 'app'):
self.logger = logging.getLogger(logger_name)
def on_llm_end(self, response, **kwargs: Any) -> None:
"""当 LLM 结束时调用"""
self.logger.info("✅ LLM End - Output:")
# 打印生成的文本
if hasattr(response, 'generations') and response.generations:
for gen_idx, generation_list in enumerate(response.generations):
for msg_idx, generation in enumerate(generation_list):
if hasattr(generation, 'text'):
output_list = generation.text.split("\n")
for i, output in enumerate(output_list):
if output.strip():
self.logger.info(f"{output}")
elif hasattr(generation, 'message'):
output_list = generation.message.split("\n")
for i, output in enumerate(output_list):
if output.strip():
self.logger.info(f"{output}")
def on_llm_error(
self, error: Exception, **kwargs: Any
) -> None:
"""当 LLM 出错时调用"""
self.logger.error(f"❌ LLM Error: {error}")
def on_tool_start(
self, serialized: Optional[Dict[str, Any]], input_str: str, **kwargs: Any
) -> None:
"""当工具开始调用时调用"""
if serialized is None:
tool_name = 'unknown_tool'
else:
tool_name = serialized.get('name', 'unknown_tool')
self.logger.info(f"🔧 Tool Start - {tool_name} with input: {str(input_str)[:100]}")
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""当工具调用结束时调用"""
self.logger.info(f"✅ Tool End Output: {output}")
def on_tool_error(
self, error: Exception, **kwargs: Any
) -> None:
"""当工具调用出错时调用"""
self.logger.error(f"❌ Tool Error: {error}")
def on_agent_action(self, action, **kwargs: Any) -> None:
"""当 Agent 执行动作时调用"""
self.logger.info(f"🎯 Agent Action: {action.log}")
from agent.agent_config import AgentConfig
# Utility functions
@ -124,9 +67,9 @@ async def init_agent(config: AgentConfig):
mcp: MCP配置如果为None则使用配置中的mcp_settings
"""
# 如果没有提供mcp使用config中的mcp_settings
mcp = config.mcp_settings if config.mcp_settings else read_mcp_settings()
system = config.system_prompt if config.system_prompt else read_system_prompt()
mcp_tools = await get_tools_from_mcp(mcp)
mcp_settings = config.mcp_settings if config.mcp_settings else read_mcp_settings()
system_prompt = config.system_prompt if config.system_prompt else read_system_prompt()
mcp_tools = await get_tools_from_mcp(mcp_settings)
# 检测或使用指定的提供商
model_provider,base_url = detect_provider(config.model_name, config.model_server)
@ -143,15 +86,11 @@ async def init_agent(config: AgentConfig):
model_kwargs.update(config.generate_cfg)
llm_instance = init_chat_model(**model_kwargs)
# 创建自定义的日志处理器
logging_handler = LoggingCallbackHandler()
# 构建中间件列表
middleware = []
# 只有在 enable_thinking 为 True 时才添加 GuidelineMiddleware
if config.enable_thinking:
middleware.append(GuidelineMiddleware(config.bot_id, llm_instance, system, config.robot_type, config.language, config.user_identifier))
middleware.append(GuidelineMiddleware(llm_instance, config, system_prompt))
# 添加工具输出长度控制中间件
tool_output_middleware = ToolOutputLengthMiddleware(
@ -179,15 +118,10 @@ async def init_agent(config: AgentConfig):
agent = create_agent(
model=llm_instance,
system_prompt=system,
system_prompt=system_prompt,
tools=mcp_tools,
middleware=middleware,
checkpointer=checkpointer # 传入 checkpointer 以启用持久化
)
# 将 handler 和 checkpointer 存储在 agent 的属性中,方便在调用时使用
agent.logging_handler = logging_handler
agent.checkpointer = checkpointer
agent.bot_id = config.bot_id
agent.session_id = config.session_id
return agent

View File

@ -1,3 +1,4 @@
from ast import Str
from langchain.agents.middleware import AgentState, AgentMiddleware, ModelRequest, ModelResponse
from langchain_core.messages import convert_to_openai_messages
from agent.prompt_loader import load_guideline_prompt
@ -9,15 +10,18 @@ from langchain_core.messages import SystemMessage
from typing import Any, Callable
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult
from .agent_config import AgentConfig
import logging
import re
logger = logging.getLogger('app')
class GuidelineMiddleware(AgentMiddleware):
def __init__(self, bot_id: str, model:BaseChatModel, prompt: str, robot_type: str, language: str, user_identifier: str):
def __init__(self, model:BaseChatModel, config:AgentConfig, prompt: str):
self.model = model
self.bot_id = bot_id
self.bot_id = config.bot_id
processed_system_prompt, guidelines, tool_description, scenarios, terms_list = extract_block_from_system_prompt(prompt)
self.processed_system_prompt = processed_system_prompt
@ -25,10 +29,10 @@ class GuidelineMiddleware(AgentMiddleware):
self.tool_description = tool_description
self.scenarios = scenarios
self.language = language
self.user_identifier = user_identifier
self.language = config.language
self.user_identifier = config.user_identifier
self.robot_type = robot_type
self.robot_type = config.robot_type
self.terms_list = terms_list
if self.robot_type == "general_agent":

57
agent/logging_handler.py Normal file
View File

@ -0,0 +1,57 @@
"""日志回调处理器模块"""
import logging
from typing import Any, Optional, Dict
from langchain_core.callbacks import BaseCallbackHandler
class LoggingCallbackHandler(BaseCallbackHandler):
"""自定义的 CallbackHandler使用项目的 logger 来记录日志"""
def __init__(self, logger_name: str = 'app'):
self.logger = logging.getLogger(logger_name)
def on_llm_end(self, response, **kwargs: Any) -> None:
"""当 LLM 结束时调用"""
self.logger.info("✅ LLM End - Output:")
# 打印生成的文本
if hasattr(response, 'generations') and response.generations:
for gen_idx, generation_list in enumerate(response.generations):
for msg_idx, generation in enumerate(generation_list):
if hasattr(generation, 'text'):
output_list = generation.text.split("\n")
for i, output in enumerate(output_list):
if output.strip():
self.logger.info(f"{output}")
elif hasattr(generation, 'message'):
output_list = generation.message.split("\n")
for i, output in enumerate(output_list):
if output.strip():
self.logger.info(f"{output}")
def on_llm_error(
self, error: Exception, **kwargs: Any
) -> None:
"""当 LLM 出错时调用"""
self.logger.error(f"❌ LLM Error: {error}")
def on_tool_start(
self, serialized: Optional[Dict[str, Any]], input_str: str, **kwargs: Any
) -> None:
"""当工具开始调用时调用"""
if serialized is None:
tool_name = 'unknown_tool'
else:
tool_name = serialized.get('name', 'unknown_tool')
self.logger.info(f"🔧 Tool Start - {tool_name} with input: {str(input_str)[:100]}")
def on_tool_end(self, output: str, **kwargs: Any) -> None:
"""当工具调用结束时调用"""
self.logger.info(f"✅ Tool End Output: {output}")
def on_tool_error(
self, error: Exception, **kwargs: Any
) -> None:
"""当工具调用出错时调用"""
self.logger.error(f"❌ Tool Error: {error}")

View File

@ -26,7 +26,7 @@ logger = logging.getLogger('app')
from agent.deep_assistant import init_agent
from agent.prompt_loader import load_system_prompt_async, load_mcp_settings_async
from utils.agent_config import AgentConfig
from agent.agent_config import AgentConfig
class ShardedAgentManager:

View File

@ -21,7 +21,7 @@ from utils.fastapi_utils import (
)
from langchain_core.messages import AIMessageChunk, HumanMessage, ToolMessage, AIMessage
from utils.settings import MAX_OUTPUT_TOKENS, MAX_CACHED_AGENTS, SHARD_COUNT
from utils.agent_config import AgentConfig
from agent.agent_config import AgentConfig
router = APIRouter()
@ -98,14 +98,12 @@ def format_messages_to_chat_history(messages: list) -> str:
async def enhanced_generate_stream_response(
agent_manager,
messages: list,
config: AgentConfig
):
"""增强的渐进式流式响应生成器 - 并发优化版本
Args:
agent_manager: agent管理器
messages: 消息列表
config: AgentConfig 对象包含所有参数
"""
try:
@ -116,7 +114,7 @@ async def enhanced_generate_stream_response(
# Preamble 任务
async def preamble_task():
try:
preamble_result = await call_preamble_llm(messages,config)
preamble_result = await call_preamble_llm(config)
# 只有当preamble_text不为空且不为"<empty>"时才输出
if preamble_result and preamble_result.strip() and preamble_result != "<empty>":
preamble_content = f"[PREAMBLE]\n{preamble_result}\n"
@ -147,12 +145,7 @@ async def enhanced_generate_stream_response(
chunk_id = 0
message_tag = ""
stream_config = {}
if config.session_id:
stream_config["configurable"] = {"thread_id": config.session_id}
if hasattr(agent, 'logging_handler'):
stream_config["callbacks"] = [agent.logging_handler]
async for msg, metadata in agent.astream({"messages": messages}, stream_mode="messages", config=stream_config, max_tokens=MAX_OUTPUT_TOKENS):
async for msg, metadata in agent.astream({"messages": config.messages}, stream_mode="messages", config=config.invoke_config(), max_tokens=MAX_OUTPUT_TOKENS):
new_content = ""
if isinstance(msg, AIMessageChunk):
@ -270,17 +263,14 @@ async def enhanced_generate_stream_response(
async def create_agent_and_generate_response(
messages: list,
config: AgentConfig
) -> Union[ChatResponse, StreamingResponse]:
"""创建agent并生成响应的公共逻辑
Args:
messages: 消息列表
config: AgentConfig 对象包含所有参数
"""
config.safe_print()
logger.info(f"messages={json.dumps(messages, ensure_ascii=False)}")
config.preamble_text, config.system_prompt = get_preamble_text(config.language, config.system_prompt)
# 如果是流式模式,使用增强的流式响应生成器
@ -288,28 +278,17 @@ async def create_agent_and_generate_response(
return StreamingResponse(
enhanced_generate_stream_response(
agent_manager=agent_manager,
messages=messages,
config=config
),
media_type="text/event-stream",
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"}
)
messages = config.messages
# 使用公共函数处理所有逻辑
agent = await agent_manager.get_or_create_agent(config)
# 准备最终的消息
final_messages = messages.copy()
# 非流式响应
agent_config = {}
if config.session_id:
agent_config["configurable"] = {"thread_id": config.session_id}
if hasattr(agent, 'logging_handler'):
agent_config["callbacks"] = [agent.logging_handler]
agent_responses = await agent.ainvoke({"messages": final_messages}, config=agent_config, max_tokens=MAX_OUTPUT_TOKENS)
append_messages = agent_responses["messages"][len(final_messages):]
agent_responses = await agent.ainvoke({"messages": messages}, config=config.invoke_config(), max_tokens=MAX_OUTPUT_TOKENS)
append_messages = agent_responses["messages"][len(messages):]
response_text = ""
for msg in append_messages:
if isinstance(msg,AIMessage):
@ -394,10 +373,9 @@ async def chat_completions(request: ChatRequest, authorization: Optional[str] =
# 处理消息
messages = process_messages(request.messages, request.language)
# 创建 AgentConfig 对象
config = AgentConfig.from_v1_request(request, api_key, project_dir, generate_cfg)
config = AgentConfig.from_v1_request(request, api_key, project_dir, generate_cfg, messages)
# 调用公共的agent创建和响应生成逻辑
return await create_agent_and_generate_response(
messages=messages,
config=config
)
@ -471,10 +449,9 @@ async def chat_completions_v2(request: ChatRequestV2, authorization: Optional[st
# 处理消息
messages = process_messages(request.messages, request.language)
# 创建 AgentConfig 对象
config = AgentConfig.from_v2_request(request, bot_config, project_dir)
config = AgentConfig.from_v2_request(request, bot_config, project_dir, messages)
# 调用公共的agent创建和响应生成逻辑
return await create_agent_and_generate_response(
messages=messages,
config=config
)

View File

@ -11,7 +11,7 @@ import logging
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain.chat_models import init_chat_model
from utils.settings import MASTERKEY, BACKEND_HOST
from utils.agent_config import AgentConfig
from agent.agent_config import AgentConfig
USER = "user"
ASSISTANT = "assistant"
@ -561,7 +561,7 @@ def get_preamble_text(language: str, system_prompt: str):
return default_preamble, system_prompt # 返回默认preamble和原始system_prompt
async def call_preamble_llm(messages: list, config: AgentConfig) -> str:
async def call_preamble_llm(config: AgentConfig) -> str:
"""调用大语言模型处理guideline分析
Args:
@ -587,8 +587,8 @@ async def call_preamble_llm(messages: list, config: AgentConfig) -> str:
model_server = config.model_server
language = config.language
preamble_choices_text = config.preamble_text
last_message = get_user_last_message_content(messages)
chat_history = format_messages_to_chat_history(messages)
last_message = get_user_last_message_content(config.messages)
chat_history = format_messages_to_chat_history(config.messages)
# 替换模板中的占位符
system_prompt = preamble_template.replace('{preamble_choices_text}', preamble_choices_text).replace('{chat_history}', chat_history).replace('{last_message}', last_message).replace('{language}', get_language_text(language))