This commit is contained in:
朱潮 2025-12-24 11:05:10 +08:00
parent e117f1ee07
commit b86a8364e9
6 changed files with 196 additions and 169 deletions

View File

@ -1,12 +1,14 @@
"""
全局 SQLite Checkpointer 管理器
解决高并发场景下的数据库锁定问题
每个 session 使用独立的数据库文件避免并发锁竞争
"""
import asyncio
import logging
import os
from datetime import datetime, timedelta, timezone
from typing import Optional, List, Dict, Any
import time
from typing import Optional, Dict, Any, Tuple
import aiosqlite
from langgraph.checkpoint.sqlite.aio import AsyncSqliteSaver
@ -15,7 +17,6 @@ from utils.settings import (
CHECKPOINT_DB_PATH,
CHECKPOINT_WAL_MODE,
CHECKPOINT_BUSY_TIMEOUT,
CHECKPOINT_POOL_SIZE,
CHECKPOINT_CLEANUP_ENABLED,
CHECKPOINT_CLEANUP_INTERVAL_HOURS,
CHECKPOINT_CLEANUP_OLDER_THAN_DAYS,
@ -23,60 +24,71 @@ from utils.settings import (
logger = logging.getLogger('app')
# 每个 session 的连接池大小(单个 session 串行处理1 个连接即可)
POOL_SIZE_PER_SESSION = 1
class CheckpointerManager:
"""
全局 Checkpointer 管理器使用连接池复用 SQLite 连接
全局 Checkpointer 管理器session_id 分离数据库文件
主要功能
1. 全局单例连接管理避免每次请求创建新连接
2. 预配置 WAL 模式和 busy_timeout
3. 连接池支持高并发访问
4. 优雅关闭机制
1. 每个 session_id 独立的数据库文件和连接池
2. 按需创建连接池不用的 session 不占用资源
3. 预配置 WAL 模式和 busy_timeout
4. 基于文件修改时间的简单清理机制
5. 优雅关闭机制
"""
def __init__(self):
self._pool: asyncio.Queue[AsyncSqliteSaver] = asyncio.Queue()
self._lock = asyncio.Lock()
self._initialized = False
# 每个 (bot_id, session_id) 一个连接池
self._pools: Dict[Tuple[str, str], asyncio.Queue[AsyncSqliteSaver]] = {}
# 每个 session 的初始化锁
self._locks: Dict[Tuple[str, str], asyncio.Lock] = {}
# 全局锁,用于保护 pools 和 locks 字典的访问
self._global_lock = asyncio.Lock()
self._closed = False
self._pool_size = CHECKPOINT_POOL_SIZE
self._db_path = CHECKPOINT_DB_PATH
# 清理调度任务
self._cleanup_task: Optional[asyncio.Task] = None
self._cleanup_stop_event = asyncio.Event()
async def initialize(self) -> None:
"""初始化连接池"""
if self._initialized:
def _get_db_path(self, bot_id: str, session_id: str) -> str:
"""获取指定 session 的数据库文件路径"""
return os.path.join(CHECKPOINT_DB_PATH, bot_id, session_id, "checkpoints.db")
def _get_pool_key(self, bot_id: str, session_id: str) -> Tuple[str, str]:
"""获取连接池的键"""
return (bot_id, session_id)
async def _initialize_session_pool(self, bot_id: str, session_id: str) -> None:
"""初始化指定 session 的连接池"""
pool_key = self._get_pool_key(bot_id, session_id)
if pool_key in self._pools:
return
async with self._lock:
if self._initialized:
return
logger.info(f"Initializing checkpointer pool for bot_id={bot_id}, session_id={session_id}")
logger.info(f"Initializing CheckpointerManager with pool_size={self._pool_size}")
db_path = self._get_db_path(bot_id, session_id)
os.makedirs(os.path.dirname(db_path), exist_ok=True)
# 确保目录存在
os.makedirs(os.path.dirname(self._db_path), exist_ok=True)
pool = asyncio.Queue()
for i in range(POOL_SIZE_PER_SESSION):
try:
conn = await self._create_configured_connection(db_path)
checkpointer = AsyncSqliteSaver(conn=conn)
# 预先调用 setup 确保表结构已创建
await checkpointer.setup()
await pool.put(checkpointer)
logger.debug(f"Created checkpointer connection {i+1}/{POOL_SIZE_PER_SESSION} for session={session_id}")
except Exception as e:
logger.error(f"Failed to create checkpointer connection {i+1} for session={session_id}: {e}")
raise
# 创建连接池
for i in range(self._pool_size):
try:
conn = await self._create_configured_connection()
checkpointer = AsyncSqliteSaver(conn=conn)
# 预先调用 setup 确保表结构已创建
await checkpointer.setup()
await self._pool.put(checkpointer)
logger.debug(f"Created checkpointer connection {i+1}/{self._pool_size}")
except Exception as e:
logger.error(f"Failed to create checkpointer connection {i+1}: {e}")
raise
self._pools[pool_key] = pool
self._locks[pool_key] = asyncio.Lock()
logger.info(f"Checkpointer pool initialized for bot_id={bot_id}, session_id={session_id}")
self._initialized = True
logger.info("CheckpointerManager initialized successfully")
async def _create_configured_connection(self) -> aiosqlite.Connection:
async def _create_configured_connection(self, db_path: str) -> aiosqlite.Connection:
"""
创建已配置的 SQLite 连接
@ -85,7 +97,7 @@ class CheckpointerManager:
2. busy_timeout - 等待锁定的最长时间
3. 其他优化参数
"""
conn = aiosqlite.connect(self._db_path)
conn = aiosqlite.connect(db_path)
# 等待连接建立
await conn.__aenter__()
@ -98,43 +110,87 @@ class CheckpointerManager:
await conn.execute("PRAGMA journal_mode = WAL")
await conn.execute("PRAGMA synchronous = NORMAL")
# WAL 模式下的优化配置
await conn.execute("PRAGMA wal_autocheckpoint = 1000")
await conn.execute("PRAGMA wal_autocheckpoint = 10000") # 增加到 10000
await conn.execute("PRAGMA cache_size = -64000") # 64MB 缓存
await conn.execute("PRAGMA temp_store = MEMORY")
await conn.execute("PRAGMA journal_size_limit = 1048576") # 1MB
await conn.commit()
return conn
async def acquire_for_agent(self) -> AsyncSqliteSaver:
async def initialize(self) -> None:
"""初始化管理器(不再预创建连接池,改为按需创建)"""
logger.info("CheckpointerManager initialized (pools will be created on-demand)")
async def acquire_for_agent(self, bot_id: str, session_id: str) -> AsyncSqliteSaver:
"""
agent 获取 checkpointer
获取指定 session checkpointer
注意此方法获取的 checkpointer 需要手动归还
使用 return_to_pool() 方法归还
Args:
bot_id: 机器人 ID
session_id: 会话 ID
Returns:
AsyncSqliteSaver 实例
"""
if not self._initialized:
raise RuntimeError("CheckpointerManager not initialized. Call initialize() first.")
if self._closed:
raise RuntimeError("CheckpointerManager is closed")
checkpointer = await self._pool.get()
logger.debug(f"Acquired checkpointer from pool, remaining: {self._pool.qsize()}")
return checkpointer
pool_key = self._get_pool_key(bot_id, session_id)
async with self._global_lock:
if pool_key not in self._pools:
await self._initialize_session_pool(bot_id, session_id)
async def return_to_pool(self, checkpointer: AsyncSqliteSaver) -> None:
# 获取该 session 的锁,确保连接池操作线程安全
async with self._locks[pool_key]:
checkpointer = await self._pools[pool_key].get()
logger.debug(f"Acquired checkpointer for bot_id={bot_id}, session_id={session_id}, remaining: {self._pools[pool_key].qsize()}")
return checkpointer
async def return_to_pool(self, bot_id: str, session_id: str, checkpointer: AsyncSqliteSaver) -> None:
"""
归还 checkpointer 到池
归还 checkpointer 对应 session
Args:
bot_id: 机器人 ID
session_id: 会话 ID
checkpointer: 要归还的 checkpointer 实例
"""
await self._pool.put(checkpointer)
logger.debug(f"Returned checkpointer to pool, remaining: {self._pool.qsize()}")
pool_key = self._get_pool_key(bot_id, session_id)
if pool_key in self._pools:
async with self._locks[pool_key]:
await self._pools[pool_key].put(checkpointer)
logger.debug(f"Returned checkpointer for bot_id={bot_id}, session_id={session_id}, remaining: {self._pools[pool_key].qsize()}")
async def _close_session_pool(self, bot_id: str, session_id: str) -> None:
"""关闭指定 session 的连接池"""
pool_key = self._get_pool_key(bot_id, session_id)
if pool_key not in self._pools:
return
logger.info(f"Closing checkpointer pool for bot_id={bot_id}, session_id={session_id}")
pool = self._pools[pool_key]
while not pool.empty():
try:
checkpointer = pool.get_nowait()
if checkpointer.conn:
await checkpointer.conn.close()
except asyncio.QueueEmpty:
break
del self._pools[pool_key]
if pool_key in self._locks:
del self._locks[pool_key]
logger.info(f"Checkpointer pool closed for bot_id={bot_id}, session_id={session_id}")
async def close(self) -> None:
"""关闭所有连接"""
"""关闭所有连接"""
if self._closed:
return
@ -148,146 +204,112 @@ class CheckpointerManager:
pass
self._cleanup_task = None
async with self._lock:
async with self._global_lock:
if self._closed:
return
logger.info("Closing CheckpointerManager...")
# 清空池并关闭所有连接
while not self._pool.empty():
try:
checkpointer = self._pool.get_nowait()
if checkpointer.conn:
await checkpointer.conn.close()
except asyncio.QueueEmpty:
break
# 关闭所有 session 的连接池
pool_keys = list(self._pools.keys())
for bot_id, session_id in pool_keys:
await self._close_session_pool(bot_id, session_id)
self._closed = True
self._initialized = False
logger.info("CheckpointerManager closed")
def get_pool_stats(self) -> dict:
"""获取连接池状态统计"""
return {
"db_path": self._db_path,
"pool_size": self._pool_size,
"available_connections": self._pool.qsize(),
"initialized": self._initialized,
"session_count": len(self._pools),
"pools": {
f"{bot_id}/{session_id}": {
"available": pool.qsize(),
"pool_size": POOL_SIZE_PER_SESSION
}
for (bot_id, session_id), pool in self._pools.items()
},
"closed": self._closed
}
# ============================================================
# Checkpoint 清理方法
# Checkpoint 清理方法(基于文件修改时间)
# ============================================================
async def get_all_thread_ids(self) -> List[str]:
async def cleanup_old_dbs(self, older_than_days: int = None) -> Dict[str, Any]:
"""
获取数据库中所有唯一的 thread_id
Returns:
List[str]: 所有 thread_id 列表
"""
if not self._initialized:
return []
conn = aiosqlite.connect(self._db_path)
await conn.__aenter__()
try:
cursor = await conn.execute(
"SELECT DISTINCT thread_id FROM checkpoints"
)
rows = await cursor.fetchall()
return [row[0] for row in rows]
finally:
await conn.close()
async def get_thread_last_activity(self, thread_id: str) -> Optional[datetime]:
"""
获取指定 thread 的最后活动时间
通过查询该 thread 最新的 checkpoint 中的 ts 字段获取时间
Args:
thread_id: 线程ID
Returns:
datetime: 最后活动时间如果找不到则返回 None
"""
if not self._initialized:
return None
checkpointer = await self.acquire_for_agent()
try:
config = {"configurable": {"thread_id": thread_id}}
result = checkpointer.alist(config=config, limit=1)
last_checkpoint = None
async for item in result:
last_checkpoint = item
break
if last_checkpoint and last_checkpoint.checkpoint:
ts_str = last_checkpoint.checkpoint.get("ts")
if ts_str:
# 解析 ISO 格式时间戳
return datetime.fromisoformat(ts_str.replace("Z", "+00:00"))
except Exception as e:
logger.warning(f"Error getting last activity for thread {thread_id}: {e}")
finally:
await self.return_to_pool(checkpointer)
return None
async def cleanup_old_threads(self, older_than_days: int = None) -> Dict[str, Any]:
"""
清理超过指定天数未活动的 thread
根据数据库文件的修改时间清理旧数据库文件
Args:
older_than_days: 清理多少天前的数据默认使用配置值
Returns:
Dict: 清理统计信息
- threads_deleted: 删除的 thread 数量
- threads_scanned: 扫描的 thread 总数
- cutoff_time: 截止时间
- deleted: 删除的 session 目录数量
- scanned: 扫描的 session 目录数量
- cutoff_time: 截止时间戳
"""
if older_than_days is None:
older_than_days = CHECKPOINT_CLEANUP_OLDER_THAN_DAYS
# 使用带时区的时间,避免比较时出错
cutoff_time = datetime.now(timezone.utc) - timedelta(days=older_than_days)
logger.info(f"Starting checkpoint cleanup: removing threads inactive since {cutoff_time.isoformat()}")
cutoff_time = time.time() - older_than_days * 86400
logger.info(f"Starting checkpoint cleanup: removing db files not modified since {cutoff_time}")
all_thread_ids = await self.get_all_thread_ids()
threads_deleted = 0
threads_scanned = len(all_thread_ids)
db_dir = CHECKPOINT_DB_PATH
deleted_count = 0
scanned_count = 0
checkpointer = await self.acquire_for_agent()
if not os.path.exists(db_dir):
logger.info(f"Checkpoint directory does not exist: {db_dir}")
return {"deleted": 0, "scanned": 0, "cutoff_time": cutoff_time}
try:
for thread_id in all_thread_ids:
# 遍历 bot_id 目录
for bot_id in os.listdir(db_dir):
bot_path = os.path.join(db_dir, bot_id)
# 跳过非目录文件
if not os.path.isdir(bot_path):
continue
# 遍历 session_id 目录
for session_id in os.listdir(bot_path):
session_path = os.path.join(bot_path, session_id)
if not os.path.isdir(session_path):
continue
db_file = os.path.join(session_path, "checkpoints.db")
if not os.path.exists(db_file):
continue
scanned_count += 1
mtime = os.path.getmtime(db_file)
if mtime < cutoff_time:
# 关闭该 session 的连接池(如果有)
await self._close_session_pool(bot_id, session_id)
# 删除整个 session 目录
try:
import shutil
shutil.rmtree(session_path)
deleted_count += 1
logger.info(f"Deleted old checkpoint session: {bot_id}/{session_id}/ (last modified: {mtime})")
except Exception as e:
logger.warning(f"Failed to delete {session_path}: {e}")
# 清理空的 bot_id 目录
for bot_id in os.listdir(db_dir):
bot_path = os.path.join(db_dir, bot_id)
if os.path.isdir(bot_path) and not os.listdir(bot_path):
try:
last_activity = await self.get_thread_last_activity(thread_id)
if last_activity and last_activity < cutoff_time:
# 删除旧 thread
config = {"configurable": {"thread_id": thread_id}}
await checkpointer.adelete_thread(config)
threads_deleted += 1
logger.debug(f"Deleted old thread: {thread_id} (last activity: {last_activity.isoformat()})")
except Exception as e:
logger.warning(f"Error processing thread {thread_id}: {e}")
finally:
await self.return_to_pool(checkpointer)
os.rmdir(bot_path)
logger.debug(f"Removed empty bot directory: {bot_id}/")
except Exception:
pass
result = {
"threads_deleted": threads_deleted,
"threads_scanned": threads_scanned,
"cutoff_time": cutoff_time.isoformat(),
"deleted": deleted_count,
"scanned": scanned_count,
"cutoff_time": cutoff_time,
"older_than_days": older_than_days
}
@ -322,7 +344,7 @@ class CheckpointerManager:
break
# 执行清理
await self.cleanup_old_threads()
await self.cleanup_old_dbs()
except asyncio.CancelledError:
logger.info("Cleanup task cancelled")

View File

@ -180,7 +180,7 @@ async def init_agent(config: AgentConfig):
if config.session_id:
from .checkpoint_manager import get_checkpointer_manager
manager = get_checkpointer_manager()
checkpointer = await manager.acquire_for_agent()
checkpointer = await manager.acquire_for_agent(config.bot_id, config.session_id)
await prepare_checkpoint_message(config, checkpointer)
summarization_middleware = SummarizationMiddleware(
model=llm_instance,

View File

@ -41,7 +41,7 @@ async def lifespan(app: FastAPI):
manager = get_checkpointer_manager()
# 启动时立即执行一次清理
try:
result = await manager.cleanup_old_threads()
result = await manager.cleanup_old_dbs()
logger.info(f"Startup cleanup completed: {result}")
except Exception as e:
logger.warning(f"Startup cleanup failed (non-fatal): {e}")

View File

@ -120,7 +120,7 @@ async def enhanced_generate_stream_response(
if checkpointer:
from agent.checkpoint_manager import get_checkpointer_manager
manager = get_checkpointer_manager()
await manager.return_to_pool(checkpointer)
await manager.return_to_pool(config.bot_id, config.session_id, checkpointer)
# 并发执行任务
# 只有在 enable_thinking 为 True 时才执行 preamble 任务
@ -249,7 +249,7 @@ async def create_agent_and_generate_response(
if checkpointer:
from agent.checkpoint_manager import get_checkpointer_manager
manager = get_checkpointer_manager()
await manager.return_to_pool(checkpointer)
await manager.return_to_pool(config.bot_id, config.session_id, checkpointer)
return result

View File

@ -227,18 +227,21 @@ class ProcessManager:
env_vars = {
'TOKENIZERS_PARALLELISM': 'false',
'TOOL_CACHE_MAX_SIZE': '10',
'CHECKPOINT_POOL_SIZE': '10',
}
elif args.profile == "balanced":
env_vars = {
'TOKENIZERS_PARALLELISM': 'true',
'TOKENIZERS_FAST': '1',
'TOOL_CACHE_MAX_SIZE': '20',
'CHECKPOINT_POOL_SIZE': '15',
}
elif args.profile == "high_performance":
env_vars = {
'TOKENIZERS_PARALLELISM': 'true',
'TOKENIZERS_FAST': '1',
'TOOL_CACHE_MAX_SIZE': '50',
'TOOL_CACHE_MAX_SIZE': '30',
'CHECKPOINT_POOL_SIZE': '20',
}
# 通用优化

View File

@ -1,9 +1,16 @@
import os
# 必填参数
# API Settings
BACKEND_HOST = os.getenv("BACKEND_HOST", "https://api-dev.gptbase.ai")
MASTERKEY = os.getenv("MASTERKEY", "master")
FASTAPI_URL = os.getenv('FASTAPI_URL', 'http://127.0.0.1:8001')
# LLM Token Settings
MAX_CONTEXT_TOKENS = int(os.getenv("MAX_CONTEXT_TOKENS", 262144))
MAX_OUTPUT_TOKENS = int(os.getenv("MAX_OUTPUT_TOKENS", 8000))
# 可选参数
# Summarization Settings
SUMMARIZATION_MAX_TOKENS = MAX_CONTEXT_TOKENS - MAX_OUTPUT_TOKENS - 1000
SUMMARIZATION_MESSAGES_TO_KEEP = int(os.getenv("SUMMARIZATION_MESSAGES_TO_KEEP", 20))
@ -13,11 +20,6 @@ TOOL_CACHE_MAX_SIZE = int(os.getenv("TOOL_CACHE_MAX_SIZE", 20))
TOOL_CACHE_TTL = int(os.getenv("TOOL_CACHE_TTL", 180))
TOOL_CACHE_AUTO_RENEW = os.getenv("TOOL_CACHE_AUTO_RENEW", "true") == "true"
# API Settings
BACKEND_HOST = os.getenv("BACKEND_HOST", "https://api-dev.gptbase.ai")
MASTERKEY = os.getenv("MASTERKEY", "master")
FASTAPI_URL = os.getenv('FASTAPI_URL', 'http://127.0.0.1:8001')
# Project Settings
PROJECT_DATA_DIR = os.getenv("PROJECT_DATA_DIR", "./projects/data")
@ -44,7 +46,7 @@ MCP_SSE_READ_TIMEOUT = int(os.getenv("MCP_SSE_READ_TIMEOUT", 300)) # SSE 读取
# ============================================================
# Checkpoint 数据库路径
CHECKPOINT_DB_PATH = os.getenv("CHECKPOINT_DB_PATH", "./projects/memory/checkpoints.db")
CHECKPOINT_DB_PATH = os.getenv("CHECKPOINT_DB_PATH", "./projects/memory/")
# 启用 WAL 模式 (Write-Ahead Logging)
# WAL 模式允许读写并发,大幅提升并发性能