add agent/tool_use_cleanup_middleware.py

This commit is contained in:
朱潮 2025-12-23 12:04:26 +08:00
parent aaad9df20a
commit 61c6b69aa5
3 changed files with 237 additions and 1 deletions

View File

@ -11,6 +11,7 @@ from langchain_mcp_adapters.client import MultiServerMCPClient
from utils.fastapi_utils import detect_provider
from .guideline_middleware import GuidelineMiddleware
from .tool_output_length_middleware import ToolOutputLengthMiddleware
from .tool_use_cleanup_middleware import ToolUseCleanupMiddleware
from utils.settings import SUMMARIZATION_MAX_TOKENS, TOOL_OUTPUT_MAX_LENGTH
from agent.agent_config import AgentConfig
from agent.prompt_loader import load_system_prompt_async, load_mcp_settings_async
@ -141,6 +142,8 @@ async def init_agent(config: AgentConfig):
else:
# 构建中间件列表
middleware = []
# 首先添加 ToolUseCleanupMiddleware 来清理孤立的 tool_use
middleware.append(ToolUseCleanupMiddleware())
# 只有在 enable_thinking 为 True 时才添加 GuidelineMiddleware
if config.enable_thinking:
middleware.append(GuidelineMiddleware(llm_instance, config, system_prompt))

View File

@ -1,8 +1,9 @@
"""日志回调处理器模块"""
import logging
from typing import Any, Optional, Dict
from typing import Any, Optional, Dict, List
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import BaseMessage
class LoggingCallbackHandler(BaseCallbackHandler):
@ -11,6 +12,27 @@ class LoggingCallbackHandler(BaseCallbackHandler):
def __init__(self, logger_name: str = 'app'):
self.logger = logging.getLogger(logger_name)
# def on_chat_model_start(
# self,
# serialized: Dict[str, Any],
# messages: List[List[BaseMessage]],
# **kwargs: Any,
# ) -> None:
# """当 Chat 模型开始时调用"""
# self.logger.info("✅ Chat Model Start - Messages:")
# for msg_list in messages:
# for msg in msg_list:
# msg_type = msg.__class__.__name__
# content = msg.content if hasattr(msg, 'content') else str(msg)
# self.logger.info(f"[{msg_type}] {content}")
# def on_llm_start(self, serialized: Dict[str, Any], prompts: Any, **kwargs: Any) -> None:
# """当 LLM 开始时调用(用于普通 LLM非 Chat 模型)"""
# self.logger.info("✅ LLM Start - Input:")
# for prompt in prompts:
# self.logger.info(str(prompt))
def on_llm_end(self, response, **kwargs: Any) -> None:
"""当 LLM 结束时调用"""
self.logger.info("✅ LLM End - Output:")

View File

@ -0,0 +1,211 @@
"""
Tool Use Cleanup Middleware for LangGraph Agents
This middleware removes tool_use blocks that don't have corresponding tool_result blocks,
preventing errors like: `tool_use` ids were found without `tool_result` blocks immediately after.
"""
import logging
from typing import Any, Callable
from langchain.agents.middleware import AgentMiddleware, ModelRequest, ModelResponse
from langchain_core.messages import AIMessage, AnyMessage, ToolMessage
logger = logging.getLogger('app')
class ToolUseCleanupMiddleware(AgentMiddleware):
"""
Middleware to clean up orphaned tool_use blocks in messages.
Ensures that every tool_use has a corresponding tool_result. If a tool_use
doesn't have a tool_result in the next message, it will be removed from the AIMessage.
Examples:
- AIMessage(tool_calls=[tool_1]) + ToolMessage(tool_call_id=tool_1) -> keep
- AIMessage(tool_calls=[tool_1]) + AIMessage(content="你好") -> remove tool_1
- AIMessage(tool_calls=[tool_1], content="请稍候") + AIMessage(content="好了") -> keep content, remove tool_1
"""
def __init__(self):
self.stats = {
'removed_ai_messages': 0,
'cleaned_ai_messages': 0,
'removed_tool_calls': 0
}
logger.info("ToolUseCleanupMiddleware initialized")
def _has_meaningful_content(self, message: AIMessage) -> bool:
"""
Check if an AIMessage has meaningful content (text) besides tool_calls.
Args:
message: The AIMessage to check
Returns:
True if the message has non-empty content, False otherwise
"""
content = message.content
# Handle different content types
if content is None:
return False
elif isinstance(content, str):
return bool(content.strip())
elif isinstance(content, list):
# Content is a list of content blocks (e.g., text, image, etc.)
# Check if there are any meaningful text blocks
for block in content:
if isinstance(block, dict):
# Check for text type blocks with non-empty content
if block.get('type') == 'text' and block.get('text', '').strip():
return True
elif isinstance(block, str) and block.strip():
return True
return False
else:
# Other types, treat as having content if it's truthy
return bool(content)
def _cleanup_tool_use_messages(self, messages: list[AnyMessage]) -> list[AnyMessage]:
"""
Clean up messages by removing tool_use blocks that don't have corresponding tool_results.
Args:
messages: List of messages to clean
Returns:
Cleaned list of messages
"""
cleaned_messages = []
i = 0
while i < len(messages):
current_msg = messages[i]
# Check if current message is an AIMessage with tool_calls
if isinstance(current_msg, AIMessage) and current_msg.tool_calls:
# Check the next message(s) for corresponding ToolMessages
valid_tool_call_ids = set()
j = i + 1
while j < len(messages) and isinstance(messages[j], ToolMessage):
valid_tool_call_ids.add(messages[j].tool_call_id)
j += 1
# Filter tool_calls to only keep those with valid tool_call_ids
filtered_tool_calls = [
tc for tc in current_msg.tool_calls
if tc.get('id') in valid_tool_call_ids
]
removed_count = len(current_msg.tool_calls) - len(filtered_tool_calls)
if removed_count > 0:
self.stats['removed_tool_calls'] += removed_count
logger.warning(
f"Removed {removed_count} orphaned tool_use(s) from AIMessage. "
f"tool_call_ids: {[tc.get('id') for tc in current_msg.tool_calls]}, "
f"valid_ids: {valid_tool_call_ids}"
)
has_content = self._has_meaningful_content(current_msg)
if filtered_tool_calls:
# Has valid tool_calls, keep the message
cleaned_msg = AIMessage(
content=current_msg.content,
tool_calls=filtered_tool_calls,
additional_kwargs=current_msg.additional_kwargs,
response_metadata=current_msg.response_metadata,
id=current_msg.id,
name=current_msg.name,
)
cleaned_messages.append(cleaned_msg)
elif has_content:
# No valid tool_calls but has meaningful content, keep without tool_calls
cleaned_msg = AIMessage(
content=current_msg.content,
tool_calls=[],
additional_kwargs=current_msg.additional_kwargs,
response_metadata=current_msg.response_metadata,
id=current_msg.id,
name=current_msg.name,
)
cleaned_messages.append(cleaned_msg)
self.stats['cleaned_ai_messages'] += 1
logger.info(
f"Removed all tool_calls from AIMessage but kept content. "
f"Content preview: {current_msg.content[:50]}..."
)
else:
# No valid tool_calls and no meaningful content, completely remove this message
self.stats['removed_ai_messages'] += 1
logger.info(
f"Removed entire AIMessage with orphaned tool_calls (no meaningful content). "
f"Removed tool_call_ids: {[tc.get('id') for tc in current_msg.tool_calls]}"
)
# Don't add to cleaned_messages - skip this message entirely
else:
# Not an AIMessage with tool_calls, add as-is
cleaned_messages.append(current_msg)
i += 1
return cleaned_messages
def wrap_model_call(
self,
request: ModelRequest,
handler: Callable[[ModelRequest], ModelResponse],
) -> ModelResponse:
"""
Synchronous wrapper to clean up orphaned tool_use blocks before model call.
"""
cleaned_messages = self._cleanup_tool_use_messages(request.messages)
if (self.stats['removed_ai_messages'] > 0 or
self.stats['cleaned_ai_messages'] > 0 or
self.stats['removed_tool_calls'] > 0):
logger.info(
f"ToolUseCleanupMiddleware: Removed {self.stats['removed_ai_messages']} messages, "
f"cleaned {self.stats['cleaned_ai_messages']} messages, "
f"removed {self.stats['removed_tool_calls']} tool_calls."
)
# Override with cleaned messages
cleaned_request = request.override(messages=cleaned_messages)
return handler(cleaned_request)
async def awrap_model_call(
self,
request: ModelRequest,
handler: Callable[[ModelRequest], Any],
) -> ModelResponse:
"""
Async wrapper to clean up orphaned tool_use blocks before model call.
"""
cleaned_messages = self._cleanup_tool_use_messages(request.messages)
if (self.stats['removed_ai_messages'] > 0 or
self.stats['cleaned_ai_messages'] > 0 or
self.stats['removed_tool_calls'] > 0):
logger.info(
f"ToolUseCleanupMiddleware: Removed {self.stats['removed_ai_messages']} messages, "
f"cleaned {self.stats['cleaned_ai_messages']} messages, "
f"removed {self.stats['removed_tool_calls']} tool_calls."
)
# Override with cleaned messages
cleaned_request = request.override(messages=cleaned_messages)
return await handler(cleaned_request)
def get_stats(self) -> dict[str, int]:
"""Get statistics about cleanup activity."""
return self.stats.copy()
def reset_stats(self):
"""Reset cleanup statistics."""
self.stats = {
'removed_ai_messages': 0,
'cleaned_ai_messages': 0,
'removed_tool_calls': 0
}