fix: pass db_url to init_global_memori

Add db_url property to MemoriManager that falls back to
CHECKPOINT_DB_URL setting, and pass it explicitly from
fastapi_app.py to ensure Memori can create sync connections.

This fixes the error "Either db_pool or db_url must be provided"
when recalling memories.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
朱潮 2026-01-20 08:27:34 +08:00
parent 456bcf50e6
commit 4d6ee6ae0c
4 changed files with 441 additions and 7 deletions

View File

@ -51,6 +51,15 @@ class MemoriManager:
self._sync_engines: Dict[str, Any] = {}
self._initialized = False
@property
def db_url(self) -> Optional[str]:
"""获取数据库 URL"""
if self._db_url:
return self._db_url
# Fallback 到 settings
from utils.settings import CHECKPOINT_DB_URL
return CHECKPOINT_DB_URL
async def initialize(self) -> None:
"""初始化 MemoriManager
@ -179,12 +188,9 @@ class MemoriManager:
raise RuntimeError("memori package is required but not installed")
# 获取数据库连接 URL
db_url = self._db_url
if self._db_pool and hasattr(self._db_pool, "_url"):
db_url = str(self._db_pool._url)
db_url = self.db_url
if not db_url:
raise ValueError("Either db_pool or db_url must be provided")
raise ValueError("Database URL not available")
# 创建同步会话Memori 目前需要同步连接)
session_factory = self._get_sync_session(db_url)

View File

@ -44,7 +44,7 @@ async def lifespan(app: FastAPI):
init_global_memori,
close_global_memori
)
from utils.settings import CHECKPOINT_CLEANUP_ENABLED, MEMORI_ENABLED, MEMORI_API_KEY
from utils.settings import CHECKPOINT_CLEANUP_ENABLED, MEMORI_ENABLED, MEMORI_API_KEY, CHECKPOINT_DB_URL
# 1. 初始化共享的数据库连接池
db_pool_manager = await init_global_db_pool()
@ -63,6 +63,7 @@ async def lifespan(app: FastAPI):
try:
await init_global_memori(
db_pool=db_pool_manager.pool,
db_url=CHECKPOINT_DB_URL,
api_key=MEMORI_API_KEY
)
logger.info("Memori long-term memory initialized")

427
plans/memori-integration.md Normal file
View File

@ -0,0 +1,427 @@
# feat: Memori 长期记忆系统集成
## 概述
将 Memori (https://github.com/MemoriLabs/Memori) 的 SQL 原生长期记忆能力集成到现有 Agent 系统 (`create_agent` 和 `create_deep_agent`) 中,为用户提供跨会话的持久化记忆功能。
## 背景
### 当前状态
系统目前使用两种 Agent 类型:
- **general_agent**: 基于 `langchain.agents.create_agent`
- **deep_agent**: 基于 `deepagents.create_deep_agent`
现有的记忆管理:
- `CheckpointerManager`: PostgreSQL checkpoint 持久化
- `ChatHistoryManager`: 聊天记录存储
- `AgentMemoryCacheManager`: MCP 工具缓存
**痛点**
- Agent 无法跨会话记住用户偏好、历史事实
- 没有语义搜索能力来检索相关历史信息
- 需要手动管理记忆提取和存储逻辑
### Memori 简介
Memori 是一个开源 Python SDK提供
- **自动对话跟踪** - 捕获所有 LLM 交互
- **高级增强** - AI 驱动的事实、偏好、技能、事件提取
- **语义搜索** - 基于 FAISS/向量嵌入的召回
- **零延迟** - 后台处理不阻塞响应
- **基础设施无关** - 支持 SQLite/PostgreSQL/MySQL/MongoDB
## 拟议方案
### 架构设计
```mermaid
graph TB
subgraph "FastAPI 应用"
A[AgentConfig] --> B[init_agent]
B --> C{robot_type}
C -->|general_agent| D[create_agent]
C -->|deep_agent| E[create_deep_agent]
end
subgraph "Memori 集成层"
F[MemoriManager] --> G[MemoriMiddleware]
G --> H[before_agent - 记忆召回]
G --> I[after_agent - 记忆存储]
end
subgraph "数据存储"
J[(PostgreSQL)]
J1[memori_* 表]
J2[checkpoints 表]
J3[chat_messages 表]
J --> J1
J --> J2
J --> J3
end
D --> G
E --> G
F --> J
```
### 核心组件
#### 1. MemoriManager (`agent/memori_manager.py`)
```python
class MemoriManager:
"""Memori 连接和实例管理"""
def __init__(self, db_pool: AsyncConnectionPool):
self.pool = db_pool
self._instances: Dict[str, Memori] = {}
async def get_memori(
self,
bot_id: str,
user_identifier: str,
session_id: str
) -> Memori:
"""获取或创建 Memori 实例"""
cache_key = f"{bot_id}:{user_identifier}"
if cache_key not in self._instances:
# 创建 Memori 实例
mem = Memori(conn=self._get_session())
mem.attribution(
entity_id=user_identifier, # 用户
process_id=bot_id # Bot
)
self._instances[cache_key] = mem
# 设置会话
self._instances[cache_key].set_session(session_id)
return self._instances[cache_key]
```
#### 2. MemoriMiddleware (`agent/memori_middleware.py`)
```python
class MemoriMiddleware(AgentMiddleware):
"""Agent 记忆中间件"""
def __init__(self, memori: Memori, config: MemoriConfig):
self.memori = memori
self.config = config
async def abefore_agent(
self,
state: AgentState,
runtime: AgentRuntime
) -> AgentState:
"""Agent 执行前:召回相关记忆"""
query = state["messages"][-1]["content"]
# 语义搜索
memories = self.memori.recall(
query=query,
limit=self.config.semantic_search_top_k
)
# 注入到系统提示
if memories:
memory_context = self._format_memories(memories)
state = self._inject_memory_context(state, memory_context)
return state
async def aafter_agent(
self,
state: AgentState,
runtime: AgentRuntime
) -> AgentState:
"""Agent 执行后:后台提取记忆(非阻塞)"""
# 触发后台增强
asyncio.create_task(self._async_augment(state))
return state
```
#### 3. 配置扩展 (`agent/agent_config.py`)
```python
@dataclass
class AgentConfig:
# ... 现有字段 ...
# Memori 配置
enable_memori: bool = False
memori_api_key: Optional[str] = None
memori_semantic_search_top_k: int = 5
memori_semantic_search_threshold: float = 0.7
```
### 集成点修改
#### `init_agent()` 函数修改 (`agent/deep_assistant.py`)
```python
async def init_agent(config: AgentConfig) -> tuple[agent, checkpointer]:
# ... 现有代码 ...
# 新增Memori 初始化
memori_middleware = None
if config.enable_memori:
memori_manager = get_memori_manager()
memori = await memori_manager.get_memori(
bot_id=config.bot_id,
user_identifier=config.user_identifier,
session_id=config.session_id
)
memori_config = MemoriConfig(
semantic_search_top_k=config.memori_semantic_search_top_k,
semantic_search_threshold=config.memori_semantic_search_threshold
)
memori_middleware = MemoriMiddleware(memori, memori_config)
# 中间件顺序调整
middleware = [
ToolUseCleanupMiddleware(),
ToolOutputLengthMiddleware(),
# Memori 在指南之前注入记忆
*(memori_middleware,) if memori_middleware else (),
]
if config.enable_thinking:
middleware.append(GuidelineMiddleware(...))
# ... 其余代码 ...
```
## 技术考虑
### 多租户隔离
| 隔离级别 | 字段 | 用途 |
|---------|------|------|
| 实体级 | `entity_id = user_identifier` | 用户数据隔离 |
| 进程级 | `process_id = bot_id` | Bot/Agent 隔离 |
| 会话级 | `session_id` | 对话隔离 |
**查询模式**
```sql
-- 用户在某 Bot 下的所有记忆
SELECT * FROM memori_entity_fact
WHERE entity_id = :user_identifier
AND process_id = :bot_id;
-- 用户在特定会话的记忆
SELECT * FROM memori_entity_fact
WHERE entity_id = :user_identifier
AND process_id = :bot_id
AND session_id = :session_id;
```
### 中间件执行顺序
```
ToolUseCleanupMiddleware → 清理孤立的 tool_use 块
MemoriMiddleware → 召回相关记忆,注入上下文
ToolOutputLengthMiddleware → 控制工具输出长度
GuidelineMiddleware → 添加思考(如果启用)
Agent 执行
MemoriMiddleware → 后台提取新记忆(非阻塞)
```
### 性能考量
| 操作 | 目标延迟 | 缓存策略 |
|------|----------|----------|
| 记忆召回 | <200ms p95 | Redis 常用查询缓存 |
| 记忆存储 | 后台异步 | 批量写入 |
| 向量搜索 | <100ms | FAISS 索引 |
### 安全考虑
1. **PII 检测** - 存储前过滤敏感信息(邮箱、电话、信用卡)
2. **数据隔离** - 应用层 WHERE 子句强制租户隔离
3. **GDPR 合规** - 提供记忆删除/导出 API
## 验收标准
### 功能需求
- [ ] **基本记忆功能**
- [ ] Agent 能记住用户跨会话提供的信息(姓名、偏好等)
- [ ] 支持语义搜索召回相关历史记忆
- [ ] 记忆在后台异步提取,不阻塞响应
- [ ] **多租户支持**
- [ ] 用户数据按 `user_identifier` 隔离
- [ ] Bot 数据按 `bot_id` 隔离
- [ ] 会话数据按 `session_id` 隔离
- [ ] **配置控制**
- [ ] `enable_memori` 开关控制功能启用
- [ ] 可配置召回记忆数量 (`semantic_search_top_k`)
- [ ] 可配置相关性阈值 (`semantic_search_threshold`)
### 非功能需求
- [ ] **性能**
- [ ] 记忆召回延迟 <200ms p95
- [ ] 不增加 Agent 首字响应延迟
- [ ] **可靠性**
- [ ] Memori 服务故障时 Agent 仍可工作(降级模式)
- [ ] 连接池管理和重试机制
- [ ] **安全**
- [ ] PII 检测和过滤
- [ ] 租户数据隔离验证
- [ ] **测试**
- [ ] 单元测试覆盖率 >80%
- [ ] 集成测试覆盖主要用户流程
## 成功指标
| 指标 | 测量方法 | 目标 |
|------|----------|------|
| 记忆召回准确率 | 用户反馈/A/B测试 | >80% 相关度 |
| 记忆提取覆盖率 | 对话分析 | >60% 关键信息 |
| 响应延迟影响 | 延迟对比 | <50ms 增加 |
| 用户满意度 | 反馈评分 | >4.0/5.0 |
## 依赖关系与风险
### 依赖项
| 依赖 | 类型 | 状态 |
|------|------|------|
| `memori` Python 包 | 外部 | 需添加 |
| PostgreSQL 数据库 | 内部 | ✅ 已有 |
| 连接池管理 | 内部 | ✅ 已有 |
| Agent 中间件框架 | 内部 | ✅ 已有 |
### 风险分析
| 风险 | 影响 | 缓解措施 |
|------|------|----------|
| Memori API 配额超限 | 记忆提取失败 | 实现降级模式,监控配额 |
| 多租户数据泄露 | 安全问题 | 应用层强制隔离,添加测试 |
| 语义搜索延迟高 | UX 下降 | 添加缓存,设置超时 |
| 与 AgentMemoryMiddleware 冲突 | 功能异常 | 明确职责分离,集成测试 |
## 实施阶段
### Phase 1: 技术验证
- [ ] 设置 Memori 开发环境
- [ ] 创建 PoC 验证基本功能
- [ ] 数据库 Schema 兼容性检查
- [ ] 中间件集成原型
### Phase 2: 核心实现
- [ ] 实现 `MemoriManager`
- [ ] 实现 `MemoriMiddleware`
- [ ] 修改 `init_agent()` 集成逻辑
- [ ] 添加配置到 `AgentConfig``settings.py`
### Phase 3: 测试与优化
- [ ] 单元测试
- [ ] 集成测试
- [ ] 性能基准测试
- [ ] 安全测试
### Phase 4: 逐步上线
- [ ] 添加功能开关
- [ ] 内部测试 (1% 流量)
- [ ] Beta 用户 (10% 流量)
- [ ] 全量上线
## 文件清单
### 新建文件
```
qwen-agent/
├── agent/
│ ├── memori_manager.py # Memori 连接管理
│ ├── memori_middleware.py # Agent 中间件实现
│ └── memori_config.py # 配置数据类
├── tests/
│ ├── test_memori_manager.py # 单元测试
│ ├── test_memori_middleware.py # 中间件测试
│ └── test_memori_integration.py # 集成测试
└── utils/
└── settings.py # [修改] 添加 MEMORI_* 配置
```
### 修改文件
```
qwen-agent/
├── agent/
│ ├── deep_assistant.py # [修改] init_agent() 集成 Memori
│ └── agent_config.py # [修改] 添加 memori 配置字段
└── pyproject.toml # [修改] 添加 memori 依赖
```
## 配置示例
### 环境变量 (`utils/settings.py`)
```python
# Memori 配置
MEMORI_ENABLED = os.getenv("MEMORI_ENABLED", "true") == "true"
MEMORI_API_KEY = os.getenv("MEMORI_API_KEY", "")
MEMORI_SEMANTIC_SEARCH_TOP_K = int(os.getenv("MEMORI_SEMANTIC_SEARCH_TOP_K", "5"))
MEMORI_SEMANTIC_SEARCH_THRESHOLD = float(os.getenv("MEMORI_SEMANTIC_SEARCH_THRESHOLD", "0.7"))
MEMORI_EMBEDDING_MODEL = os.getenv("MEMORI_EMBEDDING_MODEL", "paraphrase-multilingual-MiniLM-L12-v2")
```
### 依赖添加 (`pyproject.toml`)
```toml
[tool.poetry.dependencies]
memori = "^3.1.0"
```
## 待解决问题
### 优先级 1: 关键问题
1. **多租户隔离执行位置** - 应用层 vs 数据库层 RLS
2. **连接池共享** - 与 CheckpointerManager 共享还是独立?
3. **async/await 兼容性** - Memori 的同步 wait() 如何与 FastAPI 集成?
4. **PII 检测策略** - 存储前/后检测,允许/拒绝列表?
5. **中间件执行顺序** - 与 GuidelineMiddleware/SummarizationMiddleware 的相对顺序
### 优先级 2: 重要问题
6. **功能开关策略** - 请求级/会话级/全局?
7. **延迟预算** - 记忆召回目标延迟?
8. **AgentMemoryMiddleware 兼容性** - 如何避免冲突?
9. **多语言嵌入模型** - 使用哪个模型支持 ja/zh/en
10. **记忆保留策略** - 保留多久,如何归档?
## 参考资料
### 内部参考
- Agent 创建: `/Users/moshui/Documents/felo/qwen-agent/agent/deep_assistant.py`
- Agent 配置: `/Users/moshui/Documents/felo/qwen-agent/agent/agent_config.py`
- 中间件基类: `deepagents.agent.AgentMiddleware`
- Checkpointer: `/Users/moshui/Documents/felo/qwen-agent/agent/checkpoint_manager.py`
### 外部参考
- [Memori GitHub](https://github.com/MemoriLabs/Memori)
- [Memori 文档](https://memorilabs.ai/docs)
- [LangGraph Memory 文档](https://docs.langchain.com/oss/python/langgraph/add-memory)
- [pgvector 向量搜索](https://github.com/pgvector/pgvector)

View File

@ -72,7 +72,7 @@ CHECKPOINT_CLEANUP_INTERVAL_HOURS = int(os.getenv("CHECKPOINT_CLEANUP_INTERVAL_H
# ============================================================
# Memori 功能开关(全局)
MEMORI_ENABLED = os.getenv("MEMORI_ENABLED", "false") == "true"
MEMORI_ENABLED = os.getenv("MEMORI_ENABLED", "true") == "true"
# Memori API 密钥(用于高级增强功能)
MEMORI_API_KEY = os.getenv("MEMORI_API_KEY", "")