import json import os from typing import AsyncGenerator, Dict, List, Optional, Union import uvicorn from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse from fastapi.staticfiles import StaticFiles from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from qwen_agent.llm.schema import ASSISTANT, FUNCTION # 自定义版本,不需要text参数,不打印到终端 def get_content_from_messages(messages: List[dict]) -> str: full_text = '' content = [] TOOL_CALL_S = '[TOOL_CALL]' TOOL_RESULT_S = '[TOOL_RESPONSE]' THOUGHT_S = '[THINK]' ANSWER_S = '[ANSWER]' for msg in messages: if msg['role'] == ASSISTANT: if msg.get('reasoning_content'): assert isinstance(msg['reasoning_content'], str), 'Now only supports text messages' content.append(f'{THOUGHT_S}\n{msg["reasoning_content"]}') if msg.get('content'): assert isinstance(msg['content'], str), 'Now only supports text messages' content.append(f'{ANSWER_S}\n{msg["content"]}') if msg.get('function_call'): content.append(f'{TOOL_CALL_S} {msg["function_call"]["name"]}\n{msg["function_call"]["arguments"]}') elif msg['role'] == FUNCTION: content.append(f'{TOOL_RESULT_S} {msg["name"]}\n{msg["content"]}') else: raise TypeError if content: full_text = '\n'.join(content) return full_text from file_loaded_agent_manager import get_global_agent_manager, init_global_agent_manager from gbase_agent import update_agent_llm from zip_project_handler import zip_handler # 全局助手管理器配置 max_cached_agents = int(os.getenv("MAX_CACHED_AGENTS", "20")) # 初始化全局助手管理器 agent_manager = init_global_agent_manager(max_cached_agents=max_cached_agents) app = FastAPI(title="Database Assistant API", version="1.0.0") # 添加CORS中间件,支持前端页面 app.add_middleware( CORSMiddleware, allow_origins=["*"], # 在生产环境中应该设置为具体的前端域名 allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class Message(BaseModel): role: str content: str class ChatRequest(BaseModel): messages: List[Message] model: str = "qwen3-next" api_key: Optional[str] = None model_server: Optional[str] = None zip_url: Optional[str] = None generate_cfg: Optional[Dict] = None stream: Optional[bool] = False extra_prompt: Optional[str] = None class ChatResponse(BaseModel): choices: List[Dict] usage: Optional[Dict] = None class ChatStreamResponse(BaseModel): choices: List[Dict] usage: Optional[Dict] = None async def generate_stream_response(agent, messages, request) -> AsyncGenerator[str, None]: """生成流式响应""" accumulated_content = "" accumulated_args = "" chunk_id = 0 try: for response in agent.run(messages=messages): previous_content = accumulated_content accumulated_content = get_content_from_messages(response) # 计算新增的内容 if accumulated_content.startswith(previous_content): new_content = accumulated_content[len(previous_content):] else: new_content = accumulated_content previous_content = "" # 只有当有新内容时才发送chunk if new_content: chunk_id += 1 # 构造OpenAI格式的流式响应 chunk_data = { "id": f"chatcmpl-{chunk_id}", "object": "chat.completion.chunk", "created": int(__import__('time').time()), "model": request.model, "choices": [{ "index": 0, "delta": { "content": new_content }, "finish_reason": None }] } yield f"data: {json.dumps(chunk_data, ensure_ascii=False)}\n\n" # 发送最终完成标记 final_chunk = { "id": f"chatcmpl-{chunk_id + 1}", "object": "chat.completion.chunk", "created": int(__import__('time').time()), "model": request.model, "choices": [{ "index": 0, "delta": {}, "finish_reason": "stop" }] } yield f"data: {json.dumps(final_chunk, ensure_ascii=False)}\n\n" # 发送结束标记 yield "data: [DONE]\n\n" except Exception as e: import traceback error_details = traceback.format_exc() print(f"Error in generate_stream_response: {str(e)}") print(f"Full traceback: {error_details}") error_data = { "error": { "message": f"Stream error: {str(e)}", "type": "internal_error" } } yield f"data: {json.dumps(error_data, ensure_ascii=False)}\n\n" @app.post("/chat/completions") async def chat_completions(request: ChatRequest): """ Chat completions API similar to OpenAI, supports both streaming and non-streaming Args: request: ChatRequest containing messages, model, zip_url, etc. Returns: Union[ChatResponse, StreamingResponse]: Chat completion response or stream """ try: # 从最外层获取zip_url参数 zip_url = request.zip_url if not zip_url: raise HTTPException(status_code=400, detail="zip_url is required") # 使用ZIP URL获取项目数据 print(f"从ZIP URL加载项目: {zip_url}") project_dir = zip_handler.get_project_from_zip(zip_url) if not project_dir: raise HTTPException(status_code=400, detail=f"Failed to load project from ZIP URL: {zip_url}") # 收集项目目录下所有的 document.txt 文件 document_files = zip_handler.collect_document_files(project_dir) if not document_files: print(f"警告: 项目目录 {project_dir} 中未找到任何 document.txt 文件") # 从全局管理器获取或创建文件预加载的助手实例 agent = await agent_manager.get_or_create_agent( zip_url=zip_url, files=document_files, model_name=request.model, api_key=request.api_key, model_server=request.model_server, generate_cfg=request.generate_cfg ) extra_prompt = request.extra_prompt if request.extra_prompt else "" # 构建包含项目信息的消息上下文 messages = [ # 项目信息系统消息 { "role": "user", "content": f"当前项目来自ZIP URL: {zip_url},项目目录: {project_dir}。已加载 {len(document_files)} 个 document.txt 文件用于检索。\n" + extra_prompt }, # 用户消息批量转换 *[{"role": msg.role, "content": msg.content} for msg in request.messages] ] # 根据stream参数决定返回流式还是非流式响应 if request.stream: return StreamingResponse( generate_stream_response(agent, messages, request), media_type="text/event-stream", headers={"Cache-Control": "no-cache", "Connection": "keep-alive"} ) else: # 非流式响应 final_responses = agent.run_nonstream(messages) if final_responses and len(final_responses) > 0: # 取最后一个响应 final_response = final_responses[-1] # 如果返回的是Message对象,需要转换为字典 if hasattr(final_response, 'model_dump'): final_response = final_response.model_dump() elif hasattr(final_response, 'dict'): final_response = final_response.dict() content = final_response.get("content", "") # 构造OpenAI格式的响应 return ChatResponse( choices=[{ "index": 0, "message": { "role": "assistant", "content": content }, "finish_reason": "stop" }], usage={ "prompt_tokens": sum(len(msg.content) for msg in request.messages), "completion_tokens": len(content), "total_tokens": sum(len(msg.content) for msg in request.messages) + len(content) } ) else: raise HTTPException(status_code=500, detail="No response from agent") except Exception as e: import traceback error_details = traceback.format_exc() print(f"Error in chat_completions: {str(e)}") print(f"Full traceback: {error_details}") raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") @app.get("/") async def root(): """Chat page endpoint""" return FileResponse("chat.html", media_type="text/html") @app.get("/api/health") async def health_check(): """Health check endpoint""" return {"message": "Database Assistant API is running"} @app.get("/system/status") async def system_status(): """获取系统状态信息""" # 获取助手缓存统计 cache_stats = agent_manager.get_cache_stats() return { "status": "running", "storage_type": "File-Loaded Agent Manager", "max_cached_agents": max_cached_agents, "agent_cache": { "total_cached_agents": cache_stats["total_cached_agents"], "max_cached_agents": cache_stats["max_cached_agents"], "cached_agents": cache_stats["agents"] } } @app.post("/system/cleanup-cache") async def cleanup_cache(): """清理ZIP文件缓存和助手缓存""" try: # 清理ZIP文件缓存 zip_handler.cleanup_cache() # 清理助手实例缓存 cleared_count = agent_manager.clear_cache() return { "message": "缓存清理成功", "cleared_zip_files": True, "cleared_agent_instances": cleared_count } except Exception as e: raise HTTPException(status_code=500, detail=f"缓存清理失败: {str(e)}") @app.post("/system/cleanup-agent-cache") async def cleanup_agent_cache(): """仅清理助手实例缓存""" try: cleared_count = agent_manager.clear_cache() return { "message": "助手实例缓存清理成功", "cleared_agent_instances": cleared_count } except Exception as e: raise HTTPException(status_code=500, detail=f"助手实例缓存清理失败: {str(e)}") @app.get("/system/cached-projects") async def get_cached_projects(): """获取所有缓存的项目信息""" try: cached_urls = agent_manager.list_cached_zip_urls() cache_stats = agent_manager.get_cache_stats() return { "cached_projects": cached_urls, "cache_stats": cache_stats } except Exception as e: raise HTTPException(status_code=500, detail=f"获取缓存项目信息失败: {str(e)}") @app.post("/system/remove-project-cache") async def remove_project_cache(zip_url: str): """移除特定项目的缓存""" try: success = agent_manager.remove_cache_by_url(zip_url) if success: return {"message": f"项目缓存移除成功: {zip_url}"} else: return {"message": f"未找到项目缓存: {zip_url}", "removed": False} except Exception as e: raise HTTPException(status_code=500, detail=f"移除项目缓存失败: {str(e)}") if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)