#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 测试大语言模型API功能 """ import os import requests import json def test_llm_api(): """测试大语言模型API""" # 检查API密钥 api_key = os.environ.get("ARK_API_KEY") if not api_key: print("❌ 未设置 ARK_API_KEY 环境变量") return False print(f"✅ API密钥已设置: {api_key[:20]}...") # API配置 api_url = "https://ark.cn-beijing.volces.com/api/v3/chat/completions" model = "doubao-1-5-pro-32k-250115" # 测试消息 test_message = "你好,请简单介绍一下自己" try: print("🤖 测试大语言模型API...") headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } data = { "model": model, "messages": [ { "role": "system", "content": "你是一个智能助手,请根据用户的语音输入提供有帮助的回答。保持回答简洁明了。" }, { "role": "user", "content": test_message } ] } response = requests.post(api_url, headers=headers, json=data, timeout=30) print(f"📡 HTTP状态码: {response.status_code}") if response.status_code == 200: result = response.json() print("✅ API调用成功") if "choices" in result and len(result["choices"]) > 0: llm_response = result["choices"][0]["message"]["content"] print(f"💬 AI回复: {llm_response}") # 显示完整响应结构 print("\n📋 完整响应结构:") print(json.dumps(result, indent=2, ensure_ascii=False)) return True else: print("❌ 响应格式错误") print(f"响应内容: {response.text}") return False else: print(f"❌ API调用失败: {response.status_code}") print(f"响应内容: {response.text}") return False except requests.exceptions.RequestException as e: print(f"❌ 网络请求失败: {e}") return False except Exception as e: print(f"❌ 测试失败: {e}") return False if __name__ == "__main__": print("🧪 测试大语言模型API功能") print("=" * 50) success = test_llm_api() if success: print("\n✅ 大语言模型功能测试通过!") print("🚀 现在可以运行完整的语音助手系统了") else: print("\n❌ 大语言模型功能测试失败") print("🔧 请检查API密钥和网络连接")