#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 多进程音频控制系统 实现主控制进程和状态管理 """ import multiprocessing as mp import queue import time import threading import requests import json import base64 import gzip import uuid import asyncio import websockets from typing import Optional, Dict, Any, List from dataclasses import dataclass, asdict from enum import Enum import os import sys from audio_processes import ( InputProcess, OutputProcess, RecordingState, ControlCommand, ProcessEvent ) def output_process_target(audio_queue, config, event_queue): """输出进程的目标函数 - 在子进程中创建OutputProcess实例""" try: print("🔊 输出进程目标函数开始执行...") output_process = OutputProcess(audio_queue, config, event_queue) print("🔊 OutputProcess实例创建成功,开始运行...") output_process.run() print("🔊 输出进程运行完成") except Exception as e: print(f"❌ 输出进程出错: {e}") import traceback traceback.print_exc() class ControlSystem: """主控制系统""" def __init__(self, config: Dict[str, Any] = None): self.config = config or self._get_default_config() # 进程间通信 self.input_command_queue = mp.Queue(maxsize=100) # 主进程 → 输入进程 self.input_event_queue = mp.Queue(maxsize=100) # 输入进程 → 主进程 self.output_audio_queue = mp.Queue(maxsize=1000) # 主进程 → 输出进程 self.output_event_queue = mp.Queue(maxsize=100) # 输出进程 → 主进程 # 进程 self.input_process = None self.output_process = None # 状态管理 self.state = RecordingState.IDLE self.processing_complete = False self.playback_complete = False # 当前处理的数据 self.current_audio_data = None self.current_audio_metadata = None # API配置 self.api_config = self._setup_api_config() # 统计信息 self.stats = { 'total_conversations': 0, 'total_recording_time': 0, 'successful_processing': 0, 'failed_processing': 0 } # 运行状态 self.running = True # 检查依赖 self._check_dependencies() def _get_default_config(self) -> Dict[str, Any]: """获取默认配置""" return { 'system': { 'max_queue_size': 1000, 'process_timeout': 30, 'heartbeat_interval': 1.0 }, 'audio': { 'sample_rate': 16000, 'channels': 1, 'chunk_size': 1024 }, 'recording': { 'min_duration': 2.0, 'max_duration': 30.0, 'silence_threshold': 3.0 }, 'processing': { 'enable_asr': True, 'enable_llm': True, 'enable_tts': True, 'character': 'libai' } } def _setup_api_config(self) -> Dict[str, Any]: """设置API配置""" config = { 'asr': { 'appid': "8718217928", 'token': "ynJMX-5ix1FsJvswC9KTNlGUdubcchqc", 'cluster': "volcengine_input_common", 'ws_url': "wss://openspeech.bytedance.com/api/v2/asr" }, 'llm': { 'api_url': "https://ark.cn-beijing.volces.com/api/v3/chat/completions", 'model': "doubao-seed-1-6-flash-250828", 'api_key': os.environ.get("ARK_API_KEY", ""), 'max_tokens': 50 }, 'tts': { 'url': "https://openspeech.bytedance.com/api/v3/tts/unidirectional", 'app_id': "8718217928", 'access_key': "ynJMX-5ix1FsJvswC9KTNlGUdubcchqc", 'resource_id': "volc.service_type.10029", 'app_key': "aGjiRDfUWi", 'speaker': "zh_female_wanqudashu_moon_bigtts" } } # 加载角色配置 character_config = self._load_character_config(self.config['processing']['character']) if character_config and "voice" in character_config: config['tts']['speaker'] = character_config["voice"] return config def _load_character_config(self, character_name: str) -> Optional[Dict[str, Any]]: """加载角色配置""" characters_dir = os.path.join(os.path.dirname(__file__), "characters") config_file = os.path.join(characters_dir, f"{character_name}.json") if not os.path.exists(config_file): print(f"⚠️ 角色配置文件不存在: {config_file}") return None try: with open(config_file, 'r', encoding='utf-8') as f: config = json.load(f) print(f"✅ 加载角色: {config.get('name', character_name)}") return config except Exception as e: print(f"❌ 加载角色配置失败: {e}") return None def _check_dependencies(self): """检查依赖库""" missing_deps = [] try: import pyaudio except ImportError: missing_deps.append("pyaudio") try: import numpy except ImportError: missing_deps.append("numpy") try: import requests except ImportError: missing_deps.append("requests") try: import websockets except ImportError: missing_deps.append("websockets") if missing_deps: print(f"❌ 缺少依赖库: {', '.join(missing_deps)}") print("请安装: pip install " + " ".join(missing_deps)) sys.exit(1) # 检查API密钥 if not self.api_config['llm']['api_key']: print("⚠️ 未设置 ARK_API_KEY 环境变量,大语言模型功能将被禁用") self.config['processing']['enable_llm'] = False def start(self): """启动系统""" print("🚀 启动多进程音频控制系统") print("=" * 60) # 创建并启动输入进程 input_config = { 'zcr_min': 2400, 'zcr_max': 12000, 'min_recording_time': self.config['recording']['min_duration'], 'max_recording_time': self.config['recording']['max_duration'], 'silence_threshold': self.config['recording']['silence_threshold'], 'pre_record_duration': 2.0 } self.input_process = mp.Process( target=InputProcess( self.input_command_queue, self.input_event_queue, input_config ).run ) # 创建并启动输出进程 output_config = { 'buffer_size': 1000, 'show_progress': True, 'progress_interval': 100 } self.output_process = mp.Process( target=output_process_target, args=(self.output_audio_queue, output_config, self.output_event_queue) ) # 启动进程 self.input_process.start() self.output_process.start() print("✅ 所有进程已启动") print("🎙️ 输入进程:负责录音和语音检测") print("🔊 输出进程:负责音频播放") print("🎯 主控制:负责协调和AI处理") print("=" * 60) # 启动主控制循环 self._control_loop() def _control_loop(self): """主控制循环""" print("🎯 主控制循环启动") try: while self.running: # 根据状态处理不同逻辑 if self.state == RecordingState.IDLE: self._handle_idle_state() elif self.state == RecordingState.RECORDING: self._handle_recording_state() elif self.state == RecordingState.PROCESSING: self._handle_processing_state() elif self.state == RecordingState.PLAYING: self._handle_playing_state() # 检查进程事件 self._check_events() # 显示状态 self._display_status() # 控制循环频率 time.sleep(0.1) except KeyboardInterrupt: print("\n👋 收到退出信号...") self.shutdown() except Exception as e: print(f"❌ 主控制循环错误: {e}") self.shutdown() def _handle_idle_state(self): """处理空闲状态""" if self.state == RecordingState.IDLE: # 启用输入进程录音功能 self.input_command_queue.put(ControlCommand('enable_recording')) self.state = RecordingState.RECORDING print("🎯 状态:IDLE → RECORDING") def _handle_recording_state(self): """处理录音状态""" # 等待输入进程发送录音完成事件 pass def _handle_processing_state(self): """处理状态""" if not self.processing_complete: self._process_audio_pipeline() def _handle_playing_state(self): """处理播放状态""" # 现在主要由输出进程的播放完成事件驱动 pass def _check_events(self): """检查进程事件""" # 检查输入进程事件 try: while True: event = self.input_event_queue.get_nowait() if event.event_type == 'recording_complete': print("📡 主控制:收到录音完成事件") self._handle_recording_complete(event) except queue.Empty: pass # 检查输出进程事件 try: while True: event = self.output_event_queue.get_nowait() if event.event_type == 'playback_complete': print("📡 主控制:收到播放完成事件") print(f"📡 主控制:事件详情 - 类型: {event.event_type}, 元数据: {event.metadata}") self._handle_playback_complete(event) except queue.Empty: pass def _handle_recording_complete(self, event: ProcessEvent): """处理录音完成事件""" # 禁用输入进程录音功能 self.input_command_queue.put(ControlCommand('disable_recording')) # 保存录音数据 self.current_audio_data = event.data self.current_audio_metadata = event.metadata # 更新统计 self.stats['total_recording_time'] += event.metadata['duration'] # 切换到处理状态 self.state = RecordingState.PROCESSING self.processing_complete = False self.playback_complete = False print(f"🎯 状态:RECORDING → PROCESSING (时长: {event.metadata['duration']:.2f}s)") def _handle_playback_complete(self, event: ProcessEvent): """处理播放完成事件""" print(f"📡 主控制:开始处理播放完成事件") print(f"📡 主控制:当前状态 = {self.state.value}") print(f"📡 主控制:事件元数据 = {event.metadata}") # 标记播放完成 self.playback_complete = True print(f"📡 主控制:已设置 playback_complete = True") # 更新统计 self.stats['total_conversations'] += 1 print(f"📡 主控制:已更新统计,对话数 = {self.stats['total_conversations']}") # 等待一段时间确保音频设备完全停止播放 print(f"📡 主控制:等待音频设备完全停止...") time.sleep(1.0) # 增加1秒等待时间 # 切换到空闲状态 old_state = self.state.value self.state = RecordingState.IDLE print(f"🎯 状态:{old_state} → IDLE") # 重新启用输入进程录音功能 try: self.input_command_queue.put(ControlCommand('enable_recording')) print(f"📡 主控制:已发送 enable_recording 命令到输入进程") print(f"📡 主控制:输入进程已重新启用,可以开始新的录音") except Exception as e: print(f"❌ 主控制:发送 enable_recording 命令失败: {e}") print(f"📡 主控制:播放完成事件处理完成") def _process_audio_pipeline(self): """处理音频流水线:STT + LLM + TTS""" try: print("🤖 开始处理音频流水线") # 1. 语音识别 (STT) if self.config['processing']['enable_asr']: text = self._speech_to_text(self.current_audio_data) if not text: print("❌ 语音识别失败") self._handle_processing_failure() return print(f"📝 识别结果: {text}") else: text = "语音识别功能已禁用" # 2. 大语言模型 (LLM) if self.config['processing']['enable_llm']: response = self._call_llm(text) if not response: print("❌ 大语言模型调用失败") self._handle_processing_failure() return print(f"💬 AI回复: {response}") else: response = "大语言模型功能已禁用" # 3. 文本转语音 (TTS) if self.config['processing']['enable_tts']: success = self._text_to_speech_streaming(response) if not success: print("❌ 文本转语音失败") self._handle_processing_failure() return else: print("ℹ️ 文本转语音功能已禁用") # 直接发送结束信号 self.output_audio_queue.put(None) # 标记处理完成 self.processing_complete = True self.state = RecordingState.PLAYING self.stats['successful_processing'] += 1 print("🎯 状态:PROCESSING → PLAYING") except Exception as e: print(f"❌ 处理流水线错误: {e}") self._handle_processing_failure() def _handle_processing_failure(self): """处理失败情况""" self.stats['failed_processing'] += 1 self.state = RecordingState.IDLE self.processing_complete = True self.playback_complete = True print("🎯 状态:PROCESSING → IDLE (失败)") def _speech_to_text(self, audio_data: bytes) -> Optional[str]: """语音转文字""" try: print(f"🔍 开始语音识别,音频大小: {len(audio_data)} 字节") result = asyncio.run(self._recognize_audio_async(audio_data)) if result: print(f"✅ 语音识别成功: {result}") else: print(f"❌ 语音识别返回空结果") return result except Exception as e: print(f"❌ 语音识别异常: {e}") import traceback print(f"❌ 详细错误信息:\n{traceback.format_exc()}") return None async def _recognize_audio_async(self, audio_data: bytes) -> Optional[str]: """异步语音识别""" if not self.config['processing']['enable_asr']: return "语音识别功能已禁用" try: # 验证音频数据 print(f"🎵 音频数据验证:") print(f" - 大小: {len(audio_data)} 字节") print(f" - 是否为空: {len(audio_data) == 0}") if len(audio_data) == 0: print("❌ 音频数据为空") return None # 检查是否有WAV头部 has_wav_header = audio_data.startswith(b'RIFF') print(f" - 有WAV头部: {has_wav_header}") if has_wav_header: # 解析WAV头部 print(f" - WAV格式,可能需要提取PCM数据") riff_size = int.from_bytes(audio_data[4:8], 'little') wave_fmt = audio_data[8:12] if wave_fmt == b'WAVE': print(f" - WAVE格式正确") # 查找fmt块 fmt_pos = audio_data.find(b'fmt ') if fmt_pos > 0: fmt_size = int.from_bytes(audio_data[fmt_pos+4:fmt_pos+8], 'little') audio_format = int.from_bytes(audio_data[fmt_pos+8:fmt_pos+10], 'little') channels = int.from_bytes(audio_data[fmt_pos+10:fmt_pos+12], 'little') sample_rate = int.from_bytes(audio_data[fmt_pos+12:fmt_pos+16], 'little') print(f" - 音频格式: {audio_format}") print(f" - 声道数: {channels}") print(f" - 采样率: {sample_rate}") else: print(f" - 纯PCM数据") # 检查音频数据格式(假设是16位PCM) if len(audio_data) % 2 != 0: print(f"⚠️ 音频数据长度不是2的倍数: {len(audio_data)}") # 计算音频时长 sample_rate = self.config['audio']['sample_rate'] channels = self.config['audio']['channels'] bytes_per_second = sample_rate * channels * 2 # 16位 = 2字节 duration = len(audio_data) / bytes_per_second print(f" - 配置采样率: {sample_rate} Hz") print(f" - 配置声道数: {channels}") print(f" - 估算时长: {duration:.2f} 秒") if duration < 0.5: print(f"⚠️ 音频时长过短: {duration:.2f} 秒") import websockets print(f"🔗 连接WebSocket ASR服务: {self.api_config['asr']['ws_url']}") # 生成ASR头部 def generate_asr_header(message_type=1, message_type_specific_flags=0): PROTOCOL_VERSION = 0b0001 DEFAULT_HEADER_SIZE = 0b0001 JSON = 0b0001 GZIP = 0b0001 header = bytearray() header.append((PROTOCOL_VERSION << 4) | DEFAULT_HEADER_SIZE) header.append((message_type << 4) | message_type_specific_flags) header.append((JSON << 4) | GZIP) header.append(0x00) # reserved return header # 解析ASR响应 - 基于recorder.py的工作实现 def parse_asr_response(res): """解析ASR响应""" PROTOCOL_VERSION = res[0] >> 4 header_size = res[0] & 0x0f message_type = res[1] >> 4 message_type_specific_flags = res[1] & 0x0f serialization_method = res[2] >> 4 message_compression = res[2] & 0x0f reserved = res[3] header_extensions = res[4:header_size * 4] payload = res[header_size * 4:] result = {} payload_msg = None payload_size = 0 print(f"🔍 响应头信息: message_type={message_type}, compression={message_compression}, serialization={serialization_method}") if message_type == 0b1001: # SERVER_FULL_RESPONSE payload_size = int.from_bytes(payload[:4], "big", signed=True) payload_msg = payload[4:] print(f"📦 Full响应: payload_size={payload_size}") elif message_type == 0b1011: # SERVER_ACK seq = int.from_bytes(payload[:4], "big", signed=True) result['seq'] = seq if len(payload) >= 8: payload_size = int.from_bytes(payload[4:8], "big", signed=False) payload_msg = payload[8:] print(f"📦 ACK响应: seq={seq}, payload_size={payload_size}") elif message_type == 0b1111: # SERVER_ERROR_RESPONSE code = int.from_bytes(payload[:4], "big", signed=False) result['code'] = code payload_size = int.from_bytes(payload[4:8], "big", signed=False) payload_msg = payload[8:] print(f"❌ 错误响应: code={code}") if payload_msg is None: return result if message_compression == 0b0001: # GZIP payload_msg = gzip.decompress(payload_msg) print(f"📦 解压后大小: {len(payload_msg)} 字节") if serialization_method == 0b0001: # JSON payload_msg = json.loads(str(payload_msg, "utf-8")) result['payload_msg'] = payload_msg result['payload_size'] = payload_size return result # 构建请求参数 reqid = str(uuid.uuid4()) request_params = { 'app': { 'appid': self.api_config['asr']['appid'], 'cluster': self.api_config['asr']['cluster'], 'token': self.api_config['asr']['token'], }, 'user': { 'uid': 'multiprocess_asr' }, 'request': { 'reqid': reqid, 'nbest': 1, 'workflow': 'audio_in,resample,partition,vad,fe,decode,itn,nlu_punctuate', 'show_language': False, 'show_utterances': False, 'result_type': 'full', "sequence": 1 }, 'audio': { 'format': 'pcm', 'rate': self.config['audio']['sample_rate'], 'language': 'zh-CN', 'bits': 16, 'channel': self.config['audio']['channels'], 'codec': 'raw' } } # 构建请求 print(f"📋 ASR请求参数:") print(f" - audio.format: {request_params['audio']['format']}") print(f" - audio.rate: {request_params['audio']['rate']}") print(f" - audio.channel: {request_params['audio']['channel']}") print(f" - audio.bits: {request_params['audio']['bits']}") print(f" - audio.codec: {request_params['audio']['codec']}") print(f" - request.workflow: {request_params['request']['workflow']}") payload_bytes = str.encode(json.dumps(request_params)) payload_bytes = gzip.compress(payload_bytes) full_client_request = bytearray(generate_asr_header()) full_client_request.extend((len(payload_bytes)).to_bytes(4, 'big')) full_client_request.extend(payload_bytes) # 设置认证头 additional_headers = {'Authorization': 'Bearer; {}'.format(self.api_config['asr']['token'])} # 连接WebSocket print(f"📡 尝试连接WebSocket...") print(f"🔗 WebSocket URL: {self.api_config['asr']['ws_url']}") print(f"📋 Headers: {additional_headers}") async with websockets.connect( self.api_config['asr']['ws_url'], additional_headers=additional_headers, max_size=1000000000, ping_interval=20, ping_timeout=60 ) as ws: print(f"✅ WebSocket连接成功") # 发送请求 print(f"📤 发送ASR请求...") print(f"📦 请求大小: {len(full_client_request)} 字节") await ws.send(full_client_request) res = await ws.recv() print(f"📥 收到ASR响应,大小: {len(res)} 字节") result = parse_asr_response(res) print(f"🔍 解析ASR响应: {result}") # 发送音频数据 - 基于recorder.py实现 chunk_size = int(self.config['audio']['channels'] * 2 * self.config['audio']['sample_rate'] * 15000 / 1000) print(f"🎵 开始发送音频数据:") print(f" - 总大小: {len(audio_data)} 字节") print(f" - 分块大小: {chunk_size} 字节") print(f" - 预计分块数: {(len(audio_data) + chunk_size - 1) // chunk_size}") total_chunks = (len(audio_data) + chunk_size - 1) // chunk_size chunks_sent = 0 for offset in range(0, len(audio_data), chunk_size): chunks_sent += 1 chunk = audio_data[offset:offset + chunk_size] last = (offset + chunk_size) >= len(audio_data) print(f"📦 发送第 {chunks_sent}/{total_chunks} 块:") print(f" - 当前块大小: {len(chunk)} 字节") print(f" - 偏移量: {offset}-{offset + len(chunk)}") print(f" - 是否最后一块: {last}") try: payload_bytes = gzip.compress(chunk) audio_only_request = bytearray( generate_asr_header( message_type=0b0010, message_type_specific_flags=0b0010 if last else 0 ) ) audio_only_request.extend((len(payload_bytes)).to_bytes(4, 'big')) audio_only_request.extend(payload_bytes) print(f" - 压缩后大小: {len(payload_bytes)} 字节") print(f" - 总请求数据大小: {len(audio_only_request)} 字节") await ws.send(audio_only_request) print(f" ✅ 第 {chunks_sent} 块发送成功") # 等待服务器响应 try: res = await asyncio.wait_for(ws.recv(), timeout=30.0) print(f" 📥 收到第 {chunks_sent} 块响应,大小: {len(res)} 字节") result = parse_asr_response(res) print(f" 🔍 第 {chunks_sent} 块响应解析: {result}") except asyncio.TimeoutError: print(f" ⏰ 第 {chunks_sent} 块响应超时") raise Exception("音频块响应超时") # 检查每个响应是否有错误 if 'code' in result: print(f" 🔍 第 {chunks_sent} 块响应码: {result['code']}") if result['code'] != 1000: print(f" ❌ 第 {chunks_sent} 块数据发送失败: {result}") return None if 'payload_msg' in result and result['payload_msg'].get('code') != 1000: print(f" ❌ 第 {chunks_sent} 块数据发送失败: {result['payload_msg']}") return None except Exception as chunk_error: print(f" ❌ 第 {chunks_sent} 块发送异常: {chunk_error}") raise chunk_error if last: print(f"📨 发送最后一块音频数据完成") print(f"🎯 所有音频数据发送完成,共发送 {chunks_sent} 块") # 检查最后一个响应中是否包含识别结果 print(f"🎯 检查最终识别结果...") print(f"📋 最后一个响应: {result}") if 'payload_msg' in result: payload_msg = result['payload_msg'] print(f"📋 最终Payload结构: {list(payload_msg.keys()) if isinstance(payload_msg, dict) else type(payload_msg)}") print(f"📋 最终Payload内容: {payload_msg}") if isinstance(payload_msg, dict): # 检查响应码 if 'code' in payload_msg: code = payload_msg['code'] print(f"🔢 最终响应码: {code}") if code == 1000: print(f"✅ ASR识别成功") else: print(f"❌ ASR服务返回错误: {payload_msg.get('message', '未知错误')}") return None # 查找结果 - 与recorder.py保持一致 if 'result' in payload_msg: results = payload_msg['result'] print(f"📝 找到结果字段 'result': {results}") if isinstance(results, list) and results: text = results[0].get('text', '识别失败') print(f"✅ 提取识别文本: {text}") return text elif isinstance(results, str): print(f"✅ 提取识别文本: {results}") return results else: print(f"❌ 未找到result字段,可用字段: {list(payload_msg.keys())}") else: print(f"❌ Payload不是字典类型: {type(payload_msg)}") else: print(f"❌ 响应中没有payload_msg字段") print(f"可用字段: {list(result.keys())}") if 'code' in result: print(f"错误码: {result['code']}") return None except Exception as e: print(f"❌ 语音识别失败: {e}") return None def _call_llm(self, text: str) -> Optional[str]: """调用大语言模型""" if not self.config['processing']['enable_llm']: return "大语言模型功能已禁用" try: # 获取角色配置 character_config = self._load_character_config(self.config['processing']['character']) if character_config and "system_prompt" in character_config: system_prompt = character_config["system_prompt"] else: system_prompt = "你是一个智能助手,请根据用户的语音输入提供有帮助的回答。保持回答简洁明了。" # 构建请求 headers = { "Content-Type": "application/json", "Authorization": f"Bearer {self.api_config['llm']['api_key']}" } messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": text} ] data = { "model": self.api_config['llm']['model'], "messages": messages, "max_tokens": self.api_config['llm']['max_tokens'], "stream": False # 非流式,简化实现 } response = requests.post( self.api_config['llm']['api_url'], headers=headers, json=data, timeout=30 ) if response.status_code == 200: result = response.json() if 'choices' in result and len(result['choices']) > 0: content = result['choices'][0]['message']['content'] return content.strip() print(f"❌ LLM API调用失败: {response.status_code}") return None except Exception as e: print(f"❌ 大语言模型调用失败: {e}") return None def _text_to_speech_streaming(self, text: str) -> bool: """文本转语音(流式)""" if not self.config['processing']['enable_tts']: return False try: print("🎵 开始文本转语音") print(f"📝 待转换文本: {text}") # 发送元数据 metadata_msg = f"METADATA:{text[:30]}..." print(f"📦 发送元数据: {metadata_msg}") self.output_audio_queue.put(metadata_msg) # 构建请求头 headers = { "X-Api-App-Id": self.api_config['tts']['app_id'], "X-Api-Access-Key": self.api_config['tts']['access_key'], "X-Api-Resource-Id": self.api_config['tts']['resource_id'], "X-Api-App-Key": self.api_config['tts']['app_key'], "Content-Type": "application/json", "Connection": "keep-alive" } # 构建请求参数 payload = { "user": { "uid": "multiprocess_tts" }, "req_params": { "text": text, "speaker": self.api_config['tts']['speaker'], "audio_params": { "format": "pcm", "sample_rate": self.config['audio']['sample_rate'], "enable_timestamp": True }, "additions": "{\"explicit_language\":\"zh\",\"disable_markdown_filter\":true, \"enable_timestamp\":true}\"}" } } # 发送请求 session = requests.Session() try: print(f"🌐 发送TTS请求到: {self.api_config['tts']['url']}") response = session.post( self.api_config['tts']['url'], headers=headers, json=payload, stream=True ) if response.status_code != 200: print(f"❌ TTS请求失败: {response.status_code}") return False print(f"✅ TTS请求成功,开始接收音频流") # 处理流式响应 total_audio_size = 0 chunk_count = 0 queue_size_before = self.output_audio_queue.qsize() for chunk in response.iter_lines(decode_unicode=True): if not chunk: continue try: data = json.loads(chunk) if data.get("code", 0) == 0 and "data" in data and data["data"]: chunk_audio = base64.b64decode(data["data"]) audio_size = len(chunk_audio) total_audio_size += audio_size chunk_count += 1 # 检查队列状态 current_queue_size = self.output_audio_queue.qsize() print(f"📦 发送音频块 {chunk_count}: {audio_size} 字节, 队列大小: {current_queue_size}") # 发送到输出进程 self.output_audio_queue.put(chunk_audio) # 检查是否发送成功 new_queue_size = self.output_audio_queue.qsize() if new_queue_size == current_queue_size + 1: print(f"✅ 音频块 {chunk_count} 发送成功") else: print(f"⚠️ 音频块 {chunk_count} 发送后队列大小异常: {current_queue_size} -> {new_queue_size}") # 显示进度 if chunk_count % 5 == 0: # 更频繁显示进度 progress = f"📥 TTS生成: {chunk_count} 块 | {total_audio_size / 1024:.1f} KB" print(f"\r{progress}", end='', flush=True) elif data.get("code", 0) == 20000000: print(f"🏁 收到TTS结束信号") break elif data.get("code", 0) > 0: print(f"❌ TTS错误响应: {data}") except json.JSONDecodeError as e: print(f"❌ JSON解析错误: {e}") print(f"原始数据: {chunk}") continue print(f"\n✅ TTS音频生成完成: {chunk_count} 块, {total_audio_size / 1024:.1f} KB") print(f"📊 队列大小变化: {queue_size_before} -> {self.output_audio_queue.qsize()}") # 等待音频数据被输出进程完全处理 print(f"📦 TTS音频数据已全部发送,等待输出进程处理...") max_wait_time = 30 # 最多等待30秒 wait_start_time = time.time() last_queue_size = self.output_audio_queue.qsize() while time.time() - wait_start_time < max_wait_time: current_queue_size = self.output_audio_queue.qsize() # 如果队列为空或队列大小不再变化,说明音频数据已被处理 if current_queue_size == 0: print(f"✅ 音频队列已清空,可以发送结束信号") break elif current_queue_size == last_queue_size: # 队列大小不再变化,可能处理完成 print(f"📦 队列大小稳定在 {current_queue_size},等待确认...") time.sleep(1) if self.output_audio_queue.qsize() == current_queue_size: print(f"✅ 队列大小稳定,可以发送结束信号") break else: print(f"📦 等待队列处理: {current_queue_size} 个项目待处理") last_queue_size = current_queue_size time.sleep(0.5) # 发送结束信号,通知输出进程所有音频已发送完成 print(f"📦 发送结束信号到输出进程") print(f"📊 音频队列当前大小: {self.output_audio_queue.qsize()}") print(f"📦 注意:结束信号不会立即触发播放完成,会等待所有音频播放完成") try: self.output_audio_queue.put(None) print(f"📡 已发送结束信号到输出进程") except Exception as e: print(f"❌ 发送结束信号失败: {e}") return chunk_count > 0 finally: response.close() session.close() except Exception as e: print(f"❌ 文本转语音失败: {e}") import traceback print(f"❌ 详细错误: {traceback.format_exc()}") return False def _display_status(self): """显示系统状态""" # 每秒显示一次状态 if hasattr(self, '_last_status_time'): if time.time() - self._last_status_time < 1.0: return self._last_status_time = time.time() # 状态显示 status_lines = [ f"🎯 状态: {self.state.value}", f"📊 统计: 对话{self.stats['total_conversations']} | " f"录音{self.stats['total_recording_time']:.1f}s | " f"成功{self.stats['successful_processing']} | " f"失败{self.stats['failed_processing']}" ] # 队列状态 input_queue_size = self.input_command_queue.qsize() output_queue_size = self.output_audio_queue.qsize() if input_queue_size > 0 or output_queue_size > 0: status_lines.append(f"📦 队列: 输入{input_queue_size} | 输出{output_queue_size}") # 显示状态 status_str = " | ".join(status_lines) print(f"\r{status_str}", end='', flush=True) def shutdown(self): """关闭系统""" print("\n🛑 正在关闭系统...") self.running = False # 发送关闭命令 try: self.input_command_queue.put(ControlCommand('shutdown')) self.output_audio_queue.put(None) except: pass # 等待进程结束 if self.input_process: try: self.input_process.join(timeout=5) except: pass if self.output_process: try: self.output_process.join(timeout=5) except: pass # 显示最终统计 print("\n📊 最终统计:") print(f" 总对话次数: {self.stats['total_conversations']}") print(f" 总录音时长: {self.stats['total_recording_time']:.1f} 秒") print(f" 成功处理: {self.stats['successful_processing']}") print(f" 失败处理: {self.stats['failed_processing']}") success_rate = (self.stats['successful_processing'] / max(1, self.stats['successful_processing'] + self.stats['failed_processing']) * 100) print(f" 成功率: {success_rate:.1f}%") print("👋 系统已关闭") def main(): """主函数""" import argparse parser = argparse.ArgumentParser(description='多进程音频控制系统') parser.add_argument('--character', '-c', type=str, default='libai', help='选择角色 (默认: libai)') parser.add_argument('--config', type=str, help='配置文件路径') args = parser.parse_args() # 加载配置 config = None if args.config: try: with open(args.config, 'r', encoding='utf-8') as f: config = json.load(f) except Exception as e: print(f"⚠️ 配置文件加载失败: {e}") # 创建控制系统 control_system = ControlSystem(config) # 设置角色 if args.character: control_system.config['processing']['character'] = args.character # 启动系统 control_system.start() if __name__ == "__main__": main()