Add files via upload
This commit is contained in:
parent
adef09c069
commit
ec7f2786ba
485
voice_assistant.py
Normal file
485
voice_assistant.py
Normal file
@ -0,0 +1,485 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Voice Assistant: Real-Time Voice Chat
|
||||||
|
|
||||||
|
This app runs on a Raspberry Pi (or Linux desktop) and creates a low-latency, full-duplex voice interaction
|
||||||
|
with an AI character. It uses local speech recognition
|
||||||
|
(Vosk), local text-to-speech synthesis (Piper), and a locally hosted large language model via Ollama.
|
||||||
|
|
||||||
|
Key Features:
|
||||||
|
- Wake-free, continuous voice recognition with real-time transcription
|
||||||
|
- LLM-driven responses streamed from a selected local model (e.g., LLaMA, Qwen, Gemma)
|
||||||
|
- Audio response synthesis with a gruff custom voice using ONNX-based Piper models
|
||||||
|
- Optional noise mixing and filtering via SoX
|
||||||
|
- System volume control via ALSA
|
||||||
|
- Modular and responsive design suitable for low-latency, character-driven agents
|
||||||
|
|
||||||
|
Ideal for embedded voice AI demos, cosplay companions, or standalone AI characters.
|
||||||
|
|
||||||
|
Copyright: M15.ai
|
||||||
|
License: MIT
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import queue
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
import wave
|
||||||
|
import io
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
from vosk import Model, KaldiRecognizer
|
||||||
|
import pyaudio
|
||||||
|
import requests
|
||||||
|
from pydub import AudioSegment
|
||||||
|
import soxr
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# ------------------- TIMING UTILITY -------------------
|
||||||
|
class Timer:
|
||||||
|
def __init__(self, label):
|
||||||
|
self.label = label
|
||||||
|
self.enabled = True
|
||||||
|
def __enter__(self):
|
||||||
|
self.start = time.time()
|
||||||
|
return self
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
if self.enabled:
|
||||||
|
elapsed_ms = (time.time() - self.start) * 1000
|
||||||
|
print(f"[Timing] {self.label}: {elapsed_ms:.0f} ms")
|
||||||
|
def disable(self):
|
||||||
|
self.enabled = False
|
||||||
|
|
||||||
|
# ------------------- FUNCTIONS -------------------
|
||||||
|
|
||||||
|
def get_input_device_index(preferred_name="Shure MVX2U"):
|
||||||
|
pa = pyaudio.PyAudio()
|
||||||
|
index = None
|
||||||
|
for i in range(pa.get_device_count()):
|
||||||
|
info = pa.get_device_info_by_index(i)
|
||||||
|
if preferred_name.lower() in info['name'].lower() and info['maxInputChannels'] > 0:
|
||||||
|
print(f"[Debug] Selected input device {i}: {info['name']}")
|
||||||
|
print(f"[Debug] Device sample rate: {info['defaultSampleRate']} Hz")
|
||||||
|
index = i
|
||||||
|
break
|
||||||
|
pa.terminate()
|
||||||
|
if index is None:
|
||||||
|
print("[Warning] Preferred mic not found. Falling back to default.")
|
||||||
|
return index
|
||||||
|
|
||||||
|
def get_output_device_index(preferred_name):
|
||||||
|
pa = pyaudio.PyAudio()
|
||||||
|
for i in range(pa.get_device_count()):
|
||||||
|
info = pa.get_device_info_by_index(i)
|
||||||
|
if preferred_name.lower() in info['name'].lower() and info['maxOutputChannels'] > 0:
|
||||||
|
print(f"[Debug] Selected output device {i}: {info['name']}")
|
||||||
|
return i
|
||||||
|
print("[Warning] Preferred output device not found. Using default index 0.")
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def parse_card_number(device_str):
|
||||||
|
"""
|
||||||
|
Extract ALSA card number from string like 'plughw:3,0'
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
return int(device_str.split(":")[1].split(",")[0])
|
||||||
|
except Exception as e:
|
||||||
|
print(f"[Warning] Could not parse card number from {device_str}: {e}")
|
||||||
|
return 0 # fallback
|
||||||
|
|
||||||
|
def list_input_devices():
|
||||||
|
pa = pyaudio.PyAudio()
|
||||||
|
print("[Debug] Available input devices:")
|
||||||
|
for i in range(pa.get_device_count()):
|
||||||
|
info = pa.get_device_info_by_index(i)
|
||||||
|
if info['maxInputChannels'] > 0:
|
||||||
|
print(f" {i}: {info['name']} ({int(info['defaultSampleRate'])} Hz, {info['maxInputChannels']}ch)")
|
||||||
|
pa.terminate()
|
||||||
|
|
||||||
|
def resample_audio(data, orig_rate=48000, target_rate=16000):
|
||||||
|
# Convert byte string to numpy array
|
||||||
|
audio_np = np.frombuffer(data, dtype=np.int16)
|
||||||
|
# Resample using soxr
|
||||||
|
resampled_np = soxr.resample(audio_np, orig_rate, target_rate)
|
||||||
|
# Convert back to bytes
|
||||||
|
return resampled_np.astype(np.int16).tobytes()
|
||||||
|
|
||||||
|
def set_output_volume(volume_level, card_id=3):
|
||||||
|
"""
|
||||||
|
Set output volume using ALSA 'Speaker' control on specified card.
|
||||||
|
volume_level: 1–10 (user scale)
|
||||||
|
card_id: ALSA card number (from aplay -l)
|
||||||
|
"""
|
||||||
|
percent = max(1, min(volume_level, 10)) * 10 # map to 10–100%
|
||||||
|
try:
|
||||||
|
subprocess.run(
|
||||||
|
['amixer', '-c', str(card_id), 'sset', 'Speaker', f'{percent}%'],
|
||||||
|
check=True,
|
||||||
|
stdout=subprocess.DEVNULL,
|
||||||
|
stderr=subprocess.DEVNULL
|
||||||
|
)
|
||||||
|
print(f"[Debug] Volume set to {percent}% on card {card_id}")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"[Warning] Volume control failed on card {card_id}: {e}")
|
||||||
|
|
||||||
|
# ------------------- PATHS -------------------
|
||||||
|
|
||||||
|
CONFIG_PATH = os.path.expanduser("va_config.json")
|
||||||
|
BASE_DIR = os.path.dirname(__file__)
|
||||||
|
MODEL_PATH = os.path.join(BASE_DIR, 'vosk-model')
|
||||||
|
CHAT_URL = 'http://localhost:11434/api/chat'
|
||||||
|
|
||||||
|
# ------------------- CONFIG FILE LOADING -------------------
|
||||||
|
|
||||||
|
DEFAULT_CONFIG = {
|
||||||
|
"volume": 9,
|
||||||
|
"mic_name": "Plantronics",
|
||||||
|
"audio_output_device": "Plantronics",
|
||||||
|
"model_name": "qwen2.5:0.5b",
|
||||||
|
"voice": "en_US-kathleen-low.onnx",
|
||||||
|
"enable_audio_processing": False,
|
||||||
|
"history_length": 4,
|
||||||
|
"system_prompt": "You are a helpful assistant."
|
||||||
|
}
|
||||||
|
|
||||||
|
def load_config():
|
||||||
|
# Load config from system file or fall back to defaults
|
||||||
|
if os.path.isfile(CONFIG_PATH):
|
||||||
|
try:
|
||||||
|
with open(CONFIG_PATH, 'r') as f:
|
||||||
|
user_config = json.load(f)
|
||||||
|
return {**DEFAULT_CONFIG, **user_config} # merge with defaults
|
||||||
|
except Exception as e:
|
||||||
|
print(f"[Warning] Failed to load system config: {e}")
|
||||||
|
|
||||||
|
print("[Debug] Using default config.")
|
||||||
|
|
||||||
|
return DEFAULT_CONFIG
|
||||||
|
|
||||||
|
config = load_config()
|
||||||
|
|
||||||
|
# Apply loaded config values
|
||||||
|
VOLUME = config["volume"]
|
||||||
|
MIC_NAME = config["mic_name"]
|
||||||
|
# Choose your audio output device
|
||||||
|
# "plughw:2,0" for Plantronics headset
|
||||||
|
# "plughw:3,0" for USB PnP Sound Device
|
||||||
|
AUDIO_OUTPUT_DEVICE = config["audio_output_device"]
|
||||||
|
AUDIO_OUTPUT_DEVICE_INDEX = get_output_device_index(config["audio_output_device"])
|
||||||
|
OUTPUT_CARD = parse_card_number(AUDIO_OUTPUT_DEVICE)
|
||||||
|
MODEL_NAME = config["model_name"]
|
||||||
|
VOICE_MODEL = os.path.join("voices", config["voice"])
|
||||||
|
ENABLE_AUDIO_PROCESSING = config["enable_audio_processing"]
|
||||||
|
HISTORY_LENGTH = config["history_length"]
|
||||||
|
|
||||||
|
# Set system volume
|
||||||
|
set_output_volume(VOLUME, OUTPUT_CARD)
|
||||||
|
|
||||||
|
# Setup messages with system prompt
|
||||||
|
messages = [{"role": "system", "content": config["system_prompt"]}]
|
||||||
|
|
||||||
|
list_input_devices()
|
||||||
|
RATE = 48000
|
||||||
|
CHUNK = 1024
|
||||||
|
CHANNELS = 1
|
||||||
|
mic_enabled = True
|
||||||
|
DEVICE_INDEX = get_input_device_index()
|
||||||
|
|
||||||
|
# ------------------- OLLAMA MODEL SELECTION -------------------
|
||||||
|
|
||||||
|
# Uncomment the model you wish to use:
|
||||||
|
# MODEL_NAME = "qwen2.5:0.5b"
|
||||||
|
# MODEL_NAME = "qwen3:0.6b"
|
||||||
|
# MODEL_NAME = "tinyllama"
|
||||||
|
# MODEL_NAME = "gemma3:1b"
|
||||||
|
|
||||||
|
NOISE_LEVEL = '0.04'
|
||||||
|
BANDPASS_HIGHPASS = '300'
|
||||||
|
BANDPASS_LOWPASS = '800'
|
||||||
|
|
||||||
|
# ------------------- VOICE MODEL -------------------
|
||||||
|
|
||||||
|
VOICE_MODELS_DIR = os.path.join(BASE_DIR, 'voices')
|
||||||
|
if not os.path.isdir(VOICE_MODELS_DIR):
|
||||||
|
os.makedirs(VOICE_MODELS_DIR)
|
||||||
|
|
||||||
|
VOICE_MODEL = os.path.join(VOICE_MODELS_DIR, config["voice"])
|
||||||
|
|
||||||
|
print('[Debug] Available Piper voices:')
|
||||||
|
for f in os.listdir(VOICE_MODELS_DIR):
|
||||||
|
if f.endswith('.onnx'):
|
||||||
|
print(' ', f)
|
||||||
|
print(f'[Debug] Using VOICE_MODEL: {VOICE_MODEL}')
|
||||||
|
print(f"[Debug] Config loaded: model={MODEL_NAME}, voice={config['voice']}, vol={VOLUME}, mic={MIC_NAME}")
|
||||||
|
|
||||||
|
# ------------------- CONVERSATION STATE -------------------
|
||||||
|
|
||||||
|
audio_queue = queue.Queue()
|
||||||
|
|
||||||
|
# Audio callback for plantronics / generic mics
|
||||||
|
#def audio_callback(in_data, frame_count, time_info, status):
|
||||||
|
# audio_queue.put(in_data)
|
||||||
|
# return (None, pyaudio.paContinue)
|
||||||
|
|
||||||
|
# Audio callback form Shure
|
||||||
|
def audio_callback(in_data, frame_count, time_info, status):
|
||||||
|
global mic_enabled
|
||||||
|
if not mic_enabled:
|
||||||
|
return (None, pyaudio.paContinue)
|
||||||
|
resampled_data = resample_audio(in_data, orig_rate=48000, target_rate=16000)
|
||||||
|
audio_queue.put(resampled_data)
|
||||||
|
return (None, pyaudio.paContinue)
|
||||||
|
|
||||||
|
# ------------------- STREAM SETUP -------------------
|
||||||
|
|
||||||
|
def start_stream():
|
||||||
|
pa = pyaudio.PyAudio()
|
||||||
|
#print('[Debug] Input devices:')
|
||||||
|
#for i in range(pa.get_device_count()):
|
||||||
|
# d = pa.get_device_info_by_index(i)
|
||||||
|
# if d['maxInputChannels'] > 0:
|
||||||
|
# print(f" {i}: {d['name']} ({d['maxInputChannels']}ch @ {d['defaultSampleRate']}Hz)")
|
||||||
|
#print(f'[Debug] Using DEVICE_INDEX={DEVICE_INDEX}')
|
||||||
|
stream = pa.open(
|
||||||
|
rate=RATE,
|
||||||
|
format=pyaudio.paInt16,
|
||||||
|
channels=CHANNELS,
|
||||||
|
input=True,
|
||||||
|
input_device_index=DEVICE_INDEX,
|
||||||
|
frames_per_buffer=CHUNK,
|
||||||
|
stream_callback=audio_callback
|
||||||
|
)
|
||||||
|
stream.start_stream()
|
||||||
|
print(f'[Debug] Stream @ {RATE}Hz')
|
||||||
|
return pa, stream
|
||||||
|
|
||||||
|
# ------------------- QUERY OLLAMA CHAT ENDPOINT -------------------
|
||||||
|
|
||||||
|
def query_ollama():
|
||||||
|
#payload = {
|
||||||
|
# "model": MODEL_NAME,
|
||||||
|
# "messages": messages,
|
||||||
|
# "stream": False}
|
||||||
|
payload = {
|
||||||
|
"model": MODEL_NAME,
|
||||||
|
"messages": [messages[0]] + messages[-HISTORY_LENGTH:], # force system prompt at top
|
||||||
|
"stream": False}
|
||||||
|
#payload = {
|
||||||
|
# "model": MODEL_NAME,
|
||||||
|
# "messages": messages[-(HISTORY_LENGTH + 1):],
|
||||||
|
# "stream": False}
|
||||||
|
|
||||||
|
#print('[Debug] Sending messages to Ollama chat:')
|
||||||
|
#for m in messages[-(HISTORY_LENGTH+1):]:
|
||||||
|
# print(f" {m['role']}: {m['content']}")
|
||||||
|
with Timer("Inference"): # measure inference latency
|
||||||
|
resp = requests.post(CHAT_URL, json=payload)
|
||||||
|
#print(f'[Debug] Ollama status: {resp.status_code}')
|
||||||
|
data = resp.json()
|
||||||
|
# Extract assistant message
|
||||||
|
reply = ''
|
||||||
|
if 'message' in data and 'content' in data['message']:
|
||||||
|
reply = data['message']['content'].strip()
|
||||||
|
#print('[Debug] Reply:', reply)
|
||||||
|
return reply
|
||||||
|
|
||||||
|
# ------------------- TTS & DEGRADATION -------------------
|
||||||
|
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
def play_response(text):
|
||||||
|
import io
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
# Mute the mic during playback to avoid feedback loop
|
||||||
|
global mic_enabled
|
||||||
|
mic_enabled = False # 🔇 mute mic
|
||||||
|
|
||||||
|
# clean the response
|
||||||
|
clean = re.sub(r"[\*]+", '', text) # remove asterisks
|
||||||
|
clean = re.sub(r"\(.*?\)", '', clean) # remove (stage directions)
|
||||||
|
clean = re.sub(r"<.*?>", '', clean) # remove HTML-style tags
|
||||||
|
clean = clean.replace('\n', ' ').strip() # normalize newlines
|
||||||
|
clean = re.sub(r'\s+', ' ', clean) # collapse whitespace
|
||||||
|
clean = re.sub(r'[\U0001F300-\U0001FAFF\u2600-\u26FF\u2700-\u27BF]+', '', clean) # remove emojis
|
||||||
|
|
||||||
|
piper_path = os.path.join(BASE_DIR, 'bin', 'piper', 'piper')
|
||||||
|
|
||||||
|
# 1. Generate Piper raw PCM
|
||||||
|
with Timer("Piper inference"):
|
||||||
|
piper_proc = subprocess.Popen(
|
||||||
|
[piper_path, '--model', VOICE_MODEL, '--output_raw'],
|
||||||
|
stdin=subprocess.PIPE,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stderr=subprocess.DEVNULL
|
||||||
|
)
|
||||||
|
tts_pcm, _ = piper_proc.communicate(input=clean.encode())
|
||||||
|
|
||||||
|
if ENABLE_AUDIO_PROCESSING:
|
||||||
|
# SoX timing consolidation
|
||||||
|
sox_start = time.time()
|
||||||
|
|
||||||
|
# 2. Convert raw PCM to WAV
|
||||||
|
pcm_to_wav = subprocess.Popen(
|
||||||
|
['sox', '-t', 'raw', '-r', '16000', '-c', str(CHANNELS), '-b', '16',
|
||||||
|
'-e', 'signed-integer', '-', '-t', 'wav', '-'],
|
||||||
|
stdin=subprocess.PIPE,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stderr=subprocess.DEVNULL
|
||||||
|
)
|
||||||
|
tts_wav_16k, _ = pcm_to_wav.communicate(input=tts_pcm)
|
||||||
|
|
||||||
|
# 3. Estimate duration
|
||||||
|
duration_sec = len(tts_pcm) / (RATE * 2)
|
||||||
|
|
||||||
|
# 4. Generate white noise WAV bytes
|
||||||
|
noise_bytes = subprocess.check_output([
|
||||||
|
'sox', '-n',
|
||||||
|
'-r', '16000',
|
||||||
|
'-c', str(CHANNELS),
|
||||||
|
'-b', '16',
|
||||||
|
'-e', 'signed-integer',
|
||||||
|
'-t', 'wav', '-',
|
||||||
|
'synth', str(duration_sec),
|
||||||
|
'whitenoise', 'vol', NOISE_LEVEL
|
||||||
|
], stderr=subprocess.DEVNULL)
|
||||||
|
|
||||||
|
# 5. Write both to temp files & mix
|
||||||
|
with tempfile.NamedTemporaryFile(suffix='.wav') as tts_file, tempfile.NamedTemporaryFile(suffix='.wav') as noise_file:
|
||||||
|
tts_file.write(tts_wav_16k)
|
||||||
|
noise_file.write(noise_bytes)
|
||||||
|
tts_file.flush()
|
||||||
|
noise_file.flush()
|
||||||
|
mixer = subprocess.Popen(
|
||||||
|
['sox', '-m', tts_file.name, noise_file.name, '-t', 'wav', '-'],
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stderr=subprocess.DEVNULL
|
||||||
|
)
|
||||||
|
mixed_bytes, _ = mixer.communicate()
|
||||||
|
|
||||||
|
# 6. Apply filter
|
||||||
|
filter_proc = subprocess.Popen(
|
||||||
|
#['sox', '-t', 'wav', '-', '-t', 'wav', '-', 'highpass', BANDPASS_HIGHPASS, 'lowpass', BANDPASS_LOWPASS],
|
||||||
|
['sox', '-t', 'wav', '-', '-r', '48000', '-t', 'wav', '-',
|
||||||
|
'highpass', BANDPASS_HIGHPASS, 'lowpass', BANDPASS_LOWPASS],
|
||||||
|
stdin=subprocess.PIPE,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stderr=subprocess.DEVNULL
|
||||||
|
)
|
||||||
|
final_bytes, _ = filter_proc.communicate(input=mixed_bytes)
|
||||||
|
|
||||||
|
sox_elapsed = (time.time() - sox_start) * 1000
|
||||||
|
print(f"[Timing] SoX (total): {int(sox_elapsed)} ms")
|
||||||
|
|
||||||
|
else:
|
||||||
|
# No FX: just convert raw PCM to WAV
|
||||||
|
pcm_to_wav = subprocess.Popen(
|
||||||
|
['sox', '-t', 'raw', '-r', '16000', '-c', str(CHANNELS), '-b', '16',
|
||||||
|
'-e', 'signed-integer', '-', '-t', 'wav', '-'],
|
||||||
|
stdin=subprocess.PIPE,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stderr=subprocess.DEVNULL
|
||||||
|
)
|
||||||
|
tts_wav_16k, _ = pcm_to_wav.communicate(input=tts_pcm)
|
||||||
|
|
||||||
|
resample_proc = subprocess.Popen(
|
||||||
|
['sox', '-t', 'wav', '-', '-r', '48000', '-t', 'wav', '-'],
|
||||||
|
stdin=subprocess.PIPE,
|
||||||
|
stdout=subprocess.PIPE,
|
||||||
|
stderr=subprocess.DEVNULL
|
||||||
|
)
|
||||||
|
final_bytes, _ = resample_proc.communicate(input=tts_wav_16k)
|
||||||
|
|
||||||
|
# 7. Playback
|
||||||
|
with Timer("Playback"):
|
||||||
|
try:
|
||||||
|
wf = wave.open(io.BytesIO(final_bytes), 'rb')
|
||||||
|
|
||||||
|
|
||||||
|
pa = pyaudio.PyAudio()
|
||||||
|
stream = pa.open(
|
||||||
|
format=pa.get_format_from_width(wf.getsampwidth()),
|
||||||
|
channels=wf.getnchannels(),
|
||||||
|
rate=wf.getframerate(),
|
||||||
|
output=True,
|
||||||
|
output_device_index=AUDIO_OUTPUT_DEVICE_INDEX
|
||||||
|
)
|
||||||
|
|
||||||
|
data = wf.readframes(CHUNK)
|
||||||
|
while data:
|
||||||
|
stream.write(data)
|
||||||
|
data = wf.readframes(CHUNK)
|
||||||
|
|
||||||
|
stream.stop_stream()
|
||||||
|
stream.close()
|
||||||
|
pa.terminate()
|
||||||
|
wf.close()
|
||||||
|
|
||||||
|
except wave.Error as e:
|
||||||
|
print(f"[Error] Could not open final WAV: {e}")
|
||||||
|
|
||||||
|
finally:
|
||||||
|
mic_enabled = True # 🔊 unmute mic
|
||||||
|
time.sleep(0.3) # optional: small cooldown
|
||||||
|
|
||||||
|
|
||||||
|
# ------------------- PROCESSING LOOP -------------------
|
||||||
|
|
||||||
|
def processing_loop():
|
||||||
|
model = Model(MODEL_PATH)
|
||||||
|
#rec = KaldiRecognizer(model, RATE)
|
||||||
|
rec = KaldiRecognizer(model, 16000)
|
||||||
|
MAX_DEBUG_LEN = 200 # optional: limit length of debug output
|
||||||
|
LOW_EFFORT_UTTERANCES = {"huh", "uh", "um", "erm", "hmm", "he's", "but"}
|
||||||
|
|
||||||
|
while True:
|
||||||
|
data = audio_queue.get()
|
||||||
|
|
||||||
|
if rec.AcceptWaveform(data):
|
||||||
|
start = time.time()
|
||||||
|
r = json.loads(rec.Result())
|
||||||
|
elapsed_ms = int((time.time() - start) * 1000)
|
||||||
|
|
||||||
|
user = r.get('text', '').strip()
|
||||||
|
if user:
|
||||||
|
print(f"[Timing] STT parse: {elapsed_ms} ms")
|
||||||
|
print("User:", user)
|
||||||
|
|
||||||
|
if user.lower().strip(".,!? ") in LOW_EFFORT_UTTERANCES:
|
||||||
|
print("[Debug] Ignored low-effort utterance.")
|
||||||
|
rec = KaldiRecognizer(model, 16000)
|
||||||
|
continue # Skip LLM response + TTS for accidental noise
|
||||||
|
|
||||||
|
messages.append({"role": "user", "content": user})
|
||||||
|
# Generate assistant response
|
||||||
|
resp_text = query_ollama()
|
||||||
|
if resp_text:
|
||||||
|
# Clean debug print (remove newlines and carriage returns)
|
||||||
|
clean_debug_text = resp_text.replace('\n', ' ').replace('\r', ' ')
|
||||||
|
if len(clean_debug_text) > MAX_DEBUG_LEN:
|
||||||
|
clean_debug_text = clean_debug_text[:MAX_DEBUG_LEN] + '...'
|
||||||
|
|
||||||
|
print('Assistant:', clean_debug_text)
|
||||||
|
messages.append({"role": "assistant", "content": clean_debug_text})
|
||||||
|
|
||||||
|
# TTS generation + playback
|
||||||
|
play_response(resp_text)
|
||||||
|
else:
|
||||||
|
print('[Debug] Empty response, skipping TTS.')
|
||||||
|
|
||||||
|
# Reset recognizer after each full interaction
|
||||||
|
#rec = KaldiRecognizer(model, RATE)
|
||||||
|
rec = KaldiRecognizer(model, 16000)
|
||||||
|
|
||||||
|
# ------------------- MAIN -------------------
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
pa, stream = start_stream()
|
||||||
|
t = threading.Thread(target=processing_loop, daemon=True)
|
||||||
|
t.start()
|
||||||
|
try:
|
||||||
|
while stream.is_active():
|
||||||
|
time.sleep(0.1)
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
stream.stop_stream(); stream.close(); pa.terminate()
|
||||||
Loading…
Reference in New Issue
Block a user